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Abstract

Managerial decision-makers are increasingly supported by advanced data analyt-

ics and other AI-based technologies, but are often found to be hesitant to follow the

algorithmic advice. We examine how compensation contract design and framing

of an AI algorithm influence decision-makers’ reliance on algorithmic advice and

performance in a price estimation task. Based on a large sample of almost 1,500

participants, we find that compared to a fixed compensation, both compensation

contracts based on individual performance and tournament contracts lead to an in-

crease in effort duration and to more reliance on algorithmic advice. We further find

that using an AI algorithm that is framed as incorporating also human expertise has

positive effects on advice utilization, especially for decision-makers with fixed pay

contracts. By showing how widely used control practices such as incentives and task

framing influence the interaction of human decision-makers with AI algorithms, our

findings have direct implications for managerial practice.
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I Introduction

The emergence of big data has let algorithms and artificial intelligence (AI) enter the everyday

activities of businesses and other organizations. While low-stakes routine tasks are increasingly

being automated by advanced data analytics and other AI-based technologies, high-stakes man-

agerial decision-making has so far been largely spared from this trend (Keding and Meissner,

2021; Wilson and Daugherty, 2018). Although managers are typically not replaced by algo-

rithms, they are frequently supported by technological decision-aids in order to make better

informed and more efficient decisions, which can contribute to building competitive advantage

over competitors with less algorithmic support in decision-making (Allen and Choudhury, 2022;

Choudhury et al., 2020; Krakowski et al., 2023; Raisch and Krakowski, 2021). However, despite

the rapidly improving accuracy of AI algorithms (Dellermann et al., 2019), a growing number

of empirical studies observe that human decision-makers are more likely to rely on their own

judgement or expert opinions than the advice generated by algorithms, a phenomenon called

“algorithm aversion” (Commerford et al., 2022; Dietvorst et al., 2015, 2018).

While previous research has explored how task characteristics (Castelo et al., 2019; Hertz

and Wiese, 2019), the ability to modify an algorithm (Costello et al., 2020; Kawaguchi, 2020), or

various personality traits (e.g., Cao et al., 2022; Dietvorst and Bharti, 2020) influence algorithm

aversion, we know little about how decision-makers’ incentives and the possible incorporation

of human-expert knowledge into AI advice influence how decision-makers deal with algorithmic

advice. In this paper, we attempt to contribute to filling this gap by experimentally examining

the causal effect of the design of decision-makers’ compensation contracts and the framing

of an AI algorithm on advice utilization, the decision-makers’ effort duration, and eventual

performance.

From a traditional economics perspective, self-interested decision-makers, when being ex-

posed to performance-based incentives as opposed to rewards not related to performance, should

rely more on a human-outperforming algorithmic decision aid instead of relying on own (ef-

fortful) judgements. However, a three-decades old but still prominently cited stream of exper-

imental research suggests that incentivizing decision-makers in the presence of an algorithmic

decision aid negatively influences their performance (Arkes et al., 1986; Ashton, 1990). Accord-

ingly, the provision of financial incentives can “backfire” by encouraging decision-makers to

exert unproductive effort instead of relying on the algorithmic advice (Camerer and Hogarth,

1999).

However, several developments suggest a reexamination of these previous results. First,

due to the more frequent employment of AI-based decision aids in firms and everyday life

over the past decades, attitudes towards algorithms may have changed. Novel methodologies

of aggregating unstructured data emerged since the publication of this older empirical litera-
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ture. Second, the use of incentives in compensation contracts of managers, auditors, financial

analysts, and other organizational decision-makers is almost ubiquitous nowadays, potentially

changing their effects on algorithm uptake. Third, most previous studies in this context have

tied decision-makers’ compensation not to absolute but rather to relative (tournament) perfor-

mance (Arkes et al., 1986; Ashton, 1990; Samuels and Whitecotton, 2011). Under tournament

contracts, decision-makers are not necessarily incentivized to make good judgements, but rather

to outperform fellow competitors, which may be partially driving the observed performance ef-

fects. Artificial intelligence algorithms also do not exist in a vacuum, as they are developed and

trained by human experts and thus typically incorporate human expertise input when providing

advice. If and how decision-makers react differently when knowing that human experts were

involved in the generation of algorithmic advice, and whether financial incentives might have a

different effect under those circumstances, remains an open question.

Thus, our study intends to shed further light on how different incentive contracts influence

decision-makers’ interactions with modern AI algorithms. More specifically, we empirically test

the behavioral arguments about the “backfiring” of financial incentives as brought forward by

Arkes et al. (1986) and Ashton (1990) against more mainstream economic arguments of rational

decision-making. In contrast to other more recent experimental studies on incentives and algo-

rithm use (e.g., Neumann et al., 2022; Samuels and Whitecotton, 2011), we directly compare

how different compensation contract designs (fixed payment, performance-based incentives, and

tournament incentives) influence decision-makers’ advice utilization from differently framed AI

algorithms. In addition, we observe the time decision-makers invest to analyze contextual in-

formation and their eventual task performance. This approach allows us to empirically examine

if and when the provision of financial incentives can exacerbate or mitigate algorithm aversion.

In our experiment, about 1,500 participants estimate the price per night of multiple Airbnb

apartments in Vienna. Participants receive the actual apartment listing information, which

includes the cover photo, textual descriptions, a city map with the approximate location, and

customer review scores. In addition, they are provided with imperfect price predictions by an AI

algorithm, which, with a 30% average deviation, outperforms typical human price estimations.

The algorithmic predictions are based on a random forest model and the knowledge of five local

renting market experts. In a 3 × 3 factorial between-subjects design, we manipulate the type

of compensation contract and the framing of algorithmic advice. In particular, participants

are compensated with either a fixed payment, incentives based on individual performance, or

tournament incentives. In terms of algorithmic advice, participants either receive no algorithmic

price predictions, price predictions with a description focusing on the random forest model of

the AI algorithm, or price predictions with a description highlighting the involvement of human

experts. As main dependent variables, we measure participants’ use of the algorithm (weight
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of advice), their exerted effort duration, and their task performance (deviation from actual

apartment prices).

In our large sample, we find that both types of incentive contracts lead to a substantially

higher reliance on algorithmic advice compared to a fixed payment (although we observe a

marginally higher advice utilization with individual performance contracts compared to tourna-

ment contracts). Further, we observe that both performance-based and tournament incentives

have similar positive effects on effort duration, as well as non-negative effects on performance,

relative to a fixed payment. Thus, we observe no evidence that incentives undermine decision-

makers’ use of algorithmic advice. Concerning our human-framed AI advice treatment, we find

that participants with a fixed payment rely more on algorithmic advice when knowing that also

human experts were involved in the predictions of the AI algorithm. However, such human

expert framing of the AI algorithm does not give an additional boost to the advice utilization

of decision-makers with performance-based or tournament incentives.

We thereby contribute to different academic conversations on algorithm use in contempo-

rary research in various fields such as accounting, economics, management, and psychology.

First, our research highlights under which circumstances human decision-makers and AI algo-

rithms can collaborate to augment each other’s strengths, and is thus related to an emerging

literature on human-machine interactions in augmented decision-making, both in accounting

(e.g., Costello et al., 2020; Emett et al., 2021; Estep et al., 2023; Labro et al., 2023; Liu, 2022),

and the broader management literature (e.g., Allen and Choudhury, 2022; Choudhury et al.,

2020; Raisch and Krakowski, 2021).

Second, numerous contemporary studies found that decision-makers frequently distrust al-

gorithms, in particular when the algorithm makes mistakes from time to time (e.g., Chen et al.,

2022; Dietvorst et al., 2015; Prahl and Van Swol, 2017). For instance, in an auditing context,

Commerford et al. (2022) and Cao et al. (2022) show that decision-makers trust algorithmic

advice less than human expert advice. In contrast to previous research, we do not manipulate

human versus algorithmic advice but rather show that simply mentioning the involvement of

human experts in the development of an AI algorithm can increase decision-makers’ reliance

on advice, especially when they have fixed pay contracts. Thereby, we add a new perspective

to the literature on human trust in AI (e.g., Glikson and Woolley, 2020).

Third, our study answers recent calls for more research into the effectiveness of financial

incentives in decision-making tasks with algorithmic advice (e.g., Burton et al., 2020; Neumann

et al., 2022; Zellner et al., 2021). Older, but still prominently cited research in accounting

and psychology highlights the “paradoxical” phenomenon that incentives undermine poten-

tially positive effects of algorithmic decision-aids (Arkes et al., 1986; Ashton, 1990). In line

with other more recent experimental studies (Neumann et al., 2022), we do not observe such
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incentive-induced algorithm aversion in our contemporaneous setting with a contextually-rich

price estimation task, a modern random forest algorithm, and salient financial incentives. Based

on our study, we rather conclude that financial incentives increase both effort duration and use

of algorithmic advice. Thus, we contribute to a long-standing stream of accounting research

on financial incentives in judgment and decision-making tasks (e.g., Awasthi and Pratt, 1990;

Ding and Beaulieu, 2011; Farrell et al., 2014; Libby and Lipe, 1992; Libby and Luft, 1993).

Our study also provides guidance for managerial practice. It has been received wisdom

that using financial incentives to encourage the use of algorithmic advice may backfire (Arkes

et al., 1986; Ashton, 1990). Given vast and ongoing changes to the kinds of algorithmic support

systems available to managers, our study re-investigates in a modern design how much risk of

backfiring of algorithmic advice still remains today. We find that there is little evidence of

incentives working against the uptake of algorithmic advice, for both main incentive types,

individual and tournament incentives. We follow up on this insight and compare algorithmic

advice to advice that joins human and algorithmic insights. Such advice is more readily taken

up by participants in our experiments. We thereby add a dimension to managerial insights

into hybrid intelligence which so far emphasized the interpretability of algorithms and the

anthropomorphic advice provided by language models (e.g., Kellogg et al., 2020; Murray et al.,

2021; Shrestha et al., 2019).

Our paper proceeds as follows. In Section II we review previous research on the effect of

incentives on algorithm use, and derive hypotheses for our experimental study. Section III

describes our experimental design and procedures. Section IV presents the data analysis and

discusses our results, while Section V concludes.

II Literature review and hypothesis development

Previous literature has established that decision-support from algorithmic advice can, in many

circumstances, enrich human decision-making (Dellermann et al., 2019; Estep et al., 2023).

Due to recent improvements, algorithmic advice has become superior to human expert advice

in many decision-making settings (e.g., Choudhury et al., 2020; Dietvorst and Bharti, 2020;

Labro et al., 2023), and decision-makers should disregard algorithmic advice only when their

human intuition, tacit knowledge, and experience allows them to interpret contextual circum-

stances in a superior way (Raisch and Krakowski, 2021). The field of medicine has been a

particularly fertile ground providing evidence for superior diagnostic performance combining

human cognition and algorithmic advice (e.g., Goldstein et al., 2017; Rajpurkar et al., 2022;

Tschandl et al., 2020). Recent insights from management and related fields include benefits of

algorithmic decision-support for strategy development (e.g., Dell’Acqua et al., 2023; Krakowski

et al., 2023), performance monitoring (e.g., Labro et al., 2023), and specialist training (e.g.,

Gaessler and Piezunka, 2023).
5



However, the relationship between algorithmic advice and decision quality seems to rest

on several contingencies. Humans tend to overestimate their own decision-making capabilities,

which leads to inferior performance (see e.g., Hoffman et al., 2017, in a hiring context). A lack

of trust in decision-support systems (Wang et al., 2023) will reduce the benefits of algorithmic

advice, and decision-makers are less likely to rely on algorithmic advice when the advice does not

align with past experience (Liu et al., 2023). When the algorithms underlying decision-support

systems are intransparent, decision-makers are also less likely to employ algorithmic advice

(e.g., Bauer et al., 2021, 2023; Poursabzi-Sangdeh et al., 2021). The distrust in algorithmic

advice seems to be task-dependent. For instance, Castelo et al. (2019) show that algorithmic

decision aids are trusted less for tasks that seem rather subjective versus objective in nature.

Hertz and Wiese (2019) find that people trust advice from an algorithmic source more when

working on analytical tasks than social tasks. In a hiring context, Dargnies et al. (2022)

show that providing overconfident managers with feedback on their past hiring performance

increases their voluntary adoption of algorithmic advice, while providing more details about

how the algorithm works does not. Finally, in an experiment, Jung and Seiter (2021) find that

algorithm aversion vanishes when decision-makers are working under time pressure.

II.A Algorithmic Advice and Financial Incentives

Despite their relevance for the proliferation of new technologies in general, research on the

relationship between financial incentives and the use of algorithmic advice in decision-making

still relies on a set of rather traditional studies. Although the effortful task of combining

algorithmic advice with human judgment would intuitively benefit from incentivizing human

decision-makers (Burton et al., 2020), a “backfiring” of financial incentives has been observed

in the presence of algorithmic advice. Experimental studies by Arkes et al. (1986) and Ashton

(1990) find that, in the presence of algorithmic decision aids, incentivized participants perform

worse on judgment and decision-making tasks than unincentivized participants.

To explain this “paradoxical” effect, Ashton (1990) invokes a behavioral argument. Fi-

nancial incentives increase performance pressure on a decision-maker, and the effect of this

pressure depends on the nature of the decision task, e.g., whether it is boring and monotonous,

or interesting and requires complex cognitive activities.1 Ashton (1990)’s argument is that

the introduction of an algorithmic decision aid can change the nature of a task, in that an

otherwise dull task becomes interesting and challenging, inducing a (misguided) belief that it

requires customized solutions to achieve high performance, as opposed to simply following the

algorithmic advice. Put differently, incentivized decision-makers feel as if they have to earn

1Accordingly, Bonner et al. (2000) find that the likelihood of observing positive effects of financial incentives
on performance decreases in the complexity of the task and required skills.
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their reward by coming up with their own judgments instead of using the readily available al-

gorithmic advice. Similarly, Camerer and Hogarth (1999) as well as Awasthi and Pratt (1990)

suggest that financial incentives may motivate decision-makers to exert too much, misdirected

effort. Samuels and Whitecotton (2011) suggest that both the size and the direction of the

“backfiring” effect of financial incentives may depend on the amount of contextual information

available to decision-makers in addition to the algorithmic advice.

This finding, prominently discussed in the managerial accounting literature, contrasts eco-

nomic theory as well as other experimental evidence on the effect of economic incentives on

performance. According to basic economic theory, self-interested individuals would always

work harder and more effectively if their compensation is properly tied to performance. The

use of performance incentives for managers, auditors, financial analysts, and other organiza-

tional decision-makers is common. In their review of experimental studies on judgment and

decision-making tasks, Camerer and Hogarth (1999) report that the provision of financial in-

centives generally has positive effects on performance by improving the recall of remembered

items, mitigating anchoring bias, and reducing the variance of decision quality. The same has

been found in managerial contexts. Sprinkle (2000) reports performance-increasing effects of

incentives in task with production output decisions, in particular when subjects have the ability

to learn over multiple periods. Ding and Beaulieu (2011) show that in a balanced-scorecard

based judgment task, the provision of financial incentives reduces the unintended influence of

decision-makers’ affective biases (e.g., mood, emotions) on decision outcomes. Similarly, in a se-

ries of experiments, Farrell et al. (2014) collect behavioral and brain-activity data showing that

performance-based incentives induce decision-makers to process information more analytically

and to make more economically desirable investment choices.

These two conflicting streams of theoretical explanations and evidence, in combination with

rapid developments in the nature and application of algorithms in recent years, motivate our

study design. Using treatment conditions with and without algorithmic advice, and with and

without economic incentives, we test the following competing hypotheses. Hypothesis 1a follows

previous experimental “backfiring” evidence and associated behavioral arguments (Arkes et al.,

1986; Ashton, 1990; Camerer and Hogarth, 1999) where the provision of financial incentives

causes decision-makers to exert more unproductive effort and to rely less on algorithmic advice,

which eventually undermines their performance. This perspective is contrasted in Hypothesis 1b

with the economic theory argument that financial incentives should lead to more algorithm use

and better performance, given a reasonably powerful algorithm that outperforms an average

human decision-maker.

Hypothesis 1a. Decision-makers with financial incentives rely less on algorithmic advice (and

perform worse) than decision-makers who receive a fixed payment.

7



Hypothesis 1b. Decision-makers with financial incentives rely more on algorithmic advice

(and perform better) than decision-makers who receive a fixed payment.

II.B Types of Financial Incentives

Conditional on incentives being provided, the degree to which incentives contribute to the up-

take of algorithmic advice (and eventually to better performance) likely depends on the type

of financial incentives. To date, most experiments on judgment and decision-making with algo-

rithmic advice have tied compensation not to absolute but rather to relative performance (e.g.,

Arkes et al., 1986; Ashton, 1990; Samuels and Whitecotton, 2011). With tournament incen-

tives, decision-makers are not necessarily incentivized to make good judgements but rather to

outperform fellow competitors (Burton et al., 2020; Lazear and Rosen, 1981). Already Ashton

(1990) argues that in a tournament, knowing that their peers have access to the same algo-

rithmic advice, decision-makers may assume that merely relying on the algorithmic advice will

not be sufficient to secure a top position. This perception could encourage decision-makers to

develop their own solutions or to use heuristics, rather than following the provided algorithmic

advice.

Ottaviani and Sørensen (2006) formalize this intuitive argument in their “forecasters” model,

where each forecaster receives a private signal about the state of the world (e.g., based on

examination of available information), but also has access to a common signal (in our context:

the algorithmic advice). They show that, compared to individual performance incentives, in

a tournament setting expected-utility-maximizing agents will put more weight on their own

signal, as they now aim to maximize the likelihood to win against the other agent rather than

to maximize their forecast accuracy. Intuitively, if both agents share the same public signal,

the only way to set oneself apart is by exploiting a private signal. This incentive is present not

only for risk-loving individuals, but also for risk-neutral and slightly risk-averse ones.

These arguments are the basis for our design choice to explore two types of incentives:

individual performance-based payments, and a tournament. Hypothesis 2 suggests that under

tournament incentives, decision-makers are less likely to rely on algorithmic advice. As a

consequence, if algorithmic advice is superior in quality to the (average) human decision-maker,

absolute performance will decrease.

Hypothesis 2. Decision-makers with tournament incentives rely less on algorithmic advice

(and perform worse on average) than decision-makers with performance-based incentives.

8



II.C Types of Algorithmic Advice

A stream of (experimental) research has compared decision-makers’ reactions to human vs.

algorithmic advice.2 Dietvorst et al. (2015) report that decision-makers lose confidence in an

algorithmic decision aid more quickly than in a human expert upon observing its mistakes.

Similarly, Efendić et al. (2020) show that decision-makers judge slowly generated advice from

algorithmic decision aids to be of lower quality than slowly generated human advice. Dietvorst

and Bharti (2020) find that decision-makers favor riskier, and often worse-performing, human

judgment whenever they feel that an algorithm is unlikely to give near-perfect advice. In an

applied accounting setting, Commerford et al. (2022) show that auditors, who receive con-

tradictory evidence from an AI decision aid (instead of a human specialist), rely less on the

advice when proposing audit adjustments. Similarly, Chen et al. (2022) observe that managers

perceive negative sales forecasts as being less credible when they come from algorithms than

human experts.3

In modern algorithms, however, the distinction between algorithmic and human advice

becomes blurry. Algorithmic advice is often processed and modified, by the agent herself

or by other people (e.g., team members or assistants), before it enters the decision-making

deliberations. For example, a laboratory experiment by Dietvorst et al. (2018) as well as a field

experiment by Kawaguchi (2020) observe that giving human decision-makers the possibility to

modify an algorithmic advice substantially increases their propensity to use the algorithmic

decision aid, which can have a positive effect on their performance.

For these reasons, in our study we do not only employ a purely algorithmic advice tool,

but also “humanized” algorithmic advice that is prominently framed as including human ex-

pert input. We thus test whether, holding algorithmic performance and advice constant, an

algorithmic tool that is augmented by human expertise is trusted more than an AI algorithm

that is framed as only based on machine input. Adding this additional type of algorithmic

advice allows us to test the robustness of effects of financial incentives on algorithm uptake

(be they positive or negative) across differently framed algorithms. It also allows us to explore

whether higher trust in a humanized algorithm holds under different incentive conditions, since

previous literature comparing algorithmic and human advice has often used fixed payments or

no payments at all (e.g., Castelo et al., 2019; Chen et al., 2022; Commerford et al., 2022).

Our Hypothesis 3 extrapolates previous findings of higher trust in human than algorithmic

advice to our humanized algorithmic advice, thus postulating that framing the advice as based

2For an overview of how people deal with human advice in various conditions and under various incentives,
see Schotter (2023).

3One exception is Logg et al. (2019), who find that people adhere more to advice when they think it comes
from an algorithm than from a human individual. This “algorithm appreciation” vanishes, though, when people
have to choose between their own advice and algorithms, or when they have more knowledge about the task.
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on both human and AI input reduces algorithm aversion, leading to higher reliance on the

algorithmic advice and, consequently, higher performance.

Hypothesis 3. Decision-makers rely more on algorithmic advice (and perform better) when

the algorithm also considers human expertise.

Our full-factorial design of an incentive dimension (no incentives, individual performance

incentives, tournament incentives) and an advice type dimension (no advice, algorithmic advice,

humanized algorithmic advice) allows us to explore the robustness of the effects of providing

monetary incentives across different advice types, and of changing the framing of algorithmic

advice across different incentive conditions. However, it is difficult to predict possible interaction

effects ex-ante. First, there is a lack of previous research upon which we could build our

prediction. Second, we have a set of competing hypotheses for the effect of financial incentives,

and moderating effects of humanized algorithmic advice may differ depending on direction

and mechanism of incentive main effects. For instance, if financial incentives induce decision-

makers to maximize earnings and thus to focus on the prediction error of the algorithm, we

may expect that pure framing in the description of the advice will have less of an effect. As

a result, the human-expert input framing could have a stronger effect on decision-makers with

a fixed payment than on decision-makers with performance-based or tournament incentives.

If, on the other hand, financial incentives induce decision-makers to exert unproductive effort

and to generally distrust algorithmic advice, the human-expert framing of the algorithm could

counteract this negative effect. Thus, we will treat possible interactions as an exploratory

analysis, charting new territory without a specific hypothesis.

III Experimental design and procedures

Our experiment employs a 3× 3 factorial between-subjects design in order to study the effect

of individual and tournament incentives as well as human-expert-framing of algorithmic advice

on decision-makers’ algorithm use, their exerted effort duration, and their task performance.

III.A Task

Participants had to estimate the price per night of Airbnb apartments in Vienna (Austria)

as of June 2021. Cost-, price-, demand-, and revenue-forecasting are part of many manage-

rial occupations, and are activities that will benefit greatly from the advancement of algo-

rithms.4 Out of a sample of 11,567 listings obtained from the open-source project Inside

4Poursabzi-Sangdeh et al. (2021) use a similar price forecasting task to explore the effect of model complexity,
and Chen et al. (2022) employ a demand forecasting task in their study.
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Airbnb (www.insideairbnb.com), 10 apartment listings were selected which were no longer pub-

licly available on the Airbnb platform at the time of the experiment (so prices could not be

looked up through a search). For each listing, participants were provided with a substantial

amount of contextual information from the original listing.5 Each participant received the 10

listings in random order, one by one. In order to reduce spillovers both between tasks and be-

tween participants, our experimental subjects did not receive feedback about their performance,

neither in-between tasks nor at the end of the study.

III.B Independent Variable 1: Compensation Contract Design

To examine how the design of decision-makers’ compensation contracts influences their use of

the algorithmic advice and their eventual task performance, we manipulate how participants

get paid. Participants, if selected to be paid (see below for details on our implementation of

a between-subjects random incentive system), either received a performance-independent fixed

payment, individual performance-based incentives, or tournament incentives.

More specifically, in the fixed payment condition, participants received a lump sum of

EUR 50 for completing the price estimation task, not contingent on their task perfor-

mance. Participants in the performance-based incentives condition were paid according to

an incentive-compatible binarized quadratic scoring rule (Hossain and Okui, 2013). They

received either a payment of EUR 100 or EUR 0, with the probability of the large prize

being (quadratically) contingent on their performance in the price estimation task, equaling

max{100− 0.2× (estimate− true price)2, 0}. Theoretically, this payment rule also neutralizes

risk attitudes (of expected utility maximizers).6

In the third, tournament incentives condition, participants were randomly paired with a

second participant to determine their relative performance. In each pair, the better performing

participant (i.e., the one with the lower deviation from the true apartment price) received a

payment of EUR 100, while the worse performing participant received EUR 0.

5This included original listing title, cover photo, room type (entire apartment or private room), district of
Vienna and an approximate location on a city map, number of accommodated guests, number of bedrooms,
number of beds, number of bathrooms, superhost status, identity verification status, number of reviews, average
overall review rating, average review rating within six categories (Accuracy, Cleanliness, Check-in, Communi-
cation, Location, and Value), and the original “About this space” description (limited to 500 characters). See
Appendix E for screenshots of the task presentation.

6For implementation, we randomly drew a number between 0 and 100. If the score was higher than or equal
to that random number, the participant received EUR 100, and EUR 0 otherwise. In theory, this approach
allows us to elicit subjects’ truthful beliefs independent of their risk attitudes. See Schotter and Trevino (2014),
Schlag et al. (2015), or Charness et al. (2021) for reviews of theoretical and empirical evidence on incentive-
compatible scoring rules. To ease understanding of the binarized scoring rule, we additionally provided a table
mapping different estimation errors to probabilities for the high prize, and explained that the more accurate a
participant’s price estimations, the higher is the chance to receive the EUR 100 reward.
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III.C Independent Variable 2: Algorithmic Advice and its Framing

To examine if and how the effect of financial incentives might be different in the absence

versus the presence of an algorithmic decision aid, we manipulate between-subjects whether

participants receive advice from an AI algorithm or not, and how the inclusion of human

expertise in the algorithmic advice is framed.

In the no advice condition, participants worked on the price estimation task only based on

the provided contextual information, without any algorithmic decision aid. In the conditions

AI advice and human-AI advice, participants had to submit two estimates for each of the 10

listings: first without any advice using only the contextual information (as in the no advice

condition), and then again after receiving a prediction from an algorithm.7

To provide participants with algorithmic advice, we developed a random forest model that

utilizes a raw dataset of 11,567 apartment listings in Vienna and generates price predictions

based on numerous numerical input variables.8 In addition, we obtained price estimates for

the selected apartments from five experts. These experts were active landlords in Vienna with

substantial experience with the Viennese real estate sector and in professionally renting out

apartments in Vienna through the Airbnb platform. They completed the task in advance,

without an algorithmic decision aid. The final algorithmic decision aid displayed a weighted

average of those two estimates, with the random forest model weighing 80% and the average

human expert estimate weighing 20%. Participants knew that this algorithmic aid had an

average error of about 30% and that it derived its price predictions based on several components.

In our context, the algorithm easily outperforms an average human decision-maker.9

The two algorithmic advice conditions only differ in the framing of the algorithm. In the

human-AI advice condition, we de-emphasized the random forest model, but highlighted the

human expert involvement.10 However, note that in both conditions, participants received

7The two-stage design was mainly a methodological choice to cleanly measure the weight of advice in the
final estimate. However, we believe that the procedure also reflects managerial practice well. When facing
a decision, financial analysts, auditors, and managers in various other functional domains typically start with
receiving or collecting relevant contextual information, forming their own initial (sometimes intuitive) judgment.
This initial step is then often followed by the consultation of algorithmic decision aids. The use of AI-based tools
usually requires some prior knowledge of the subject matter. At the same time, in managerial decision-making
and many other settings, it is very unlikely that the advice from an AI system is the final decision. Recent
legislation proposals in the European Union even include a mandate for human intervention whenever there are
legal ramifications of a decision (e.g., in HR and hiring contexts).

8Specifically, these are apartment type, number of bedrooms, number of beds, number of accommodated
guests, district of Vienna, number of reviews, average review rating, and superhost status. The model and its
selection process are described in detail in Appendix D.

9The average relative error of participants in our no-advice condition is 76.50%, with 95% of participants
performing worse than the algorithm.

10In particular, in the human-AI advice conditions we describe to participants that “the price estimate
incorporates the expert advice from 5 individuals. The five experts have substantial experience in the pricing of
Airbnb apartments and are familiar with the housing and accommodation sector in Vienna.” We intentionally
kept the expert description rather vague and only refer to their expertise, in order to mitigate potential effects
of prior positive or negative experiences with landlords.
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exactly the same algorithmic advice and the same information that it has an average error of

30%. For a rational Bayesian decision-maker, only the eventual precision of the given advice

is relevant, not on how many and which sources it relies. In this sense, our human-AI advice

condition is purely a framing manipulation.11,12

III.D Dependent Variables: Algorithm Use, Effort, and Estimation Error

Our three main dependent variables are participants’ use of the algorithm (measured as the

weight of advice), their exerted effort duration (measured as time in seconds), and their per-

formance (measured as the absolute estimation error).

First, for those participants who receive algorithmic advice, we measure how much they

rely on this advice when making price estimations. In line with previous experimental research

on advice-taking in judgment tasks and algorithm aversion (e.g., Logg et al., 2019; Prahl and

Van Swol, 2017; see Bonaccio and Dalal, 2006, for an overview), we measure participants’ al-

gorithm use as the weight of advice based on a definition established by Harvey and Fischer

(1997), by relating the absolute difference between participants’ final and initial price estima-

tion to the absolute difference between the algorithmic advice and participants’ initial price

estimation. Since, as Bonaccio and Dalal (2006) discuss, this definition may lead to ambiguous

values smaller than 0 or larger than 1 in certain cases (e.g., when initial and final estimate are

on different sides of the algorithmic advice, or the decision-makers’ final price estimation moves

in the opposite direction of the advice), we censor the weight of advice to values between 0 and

1.13

Weight of advice = min

(

max

(

0,
abs (final price estimation− initial price estimation)

abs (algorithmic advice− initial price estimation)

)

, 1

)

As a second dependent variable, we measure how much effort participants exert on the

price estimation task, by collecting data on the time (in seconds) that participants devote

to estimating the price per night for each Airbnb apartment (“effort duration”, see Bonner

11The framing may also affect the perception of parameters of the advice error distribution which we did
not fix through the instructions. For example, participants may think that a combination of algorithmic
advice with human expertise may curtail long tails of the error distribution. However, for typical symmetric
single-peaked mean-zero error distributions, the effect of presumed affected secondary distribution parameters
(kurtosis, skewness) while holding the average error constant on participants’ guesses is likely negligible.

12Following the recommendation of a reviewer, we ran a follow-up study in which we tested how decision-
makers judge the credibility of advice from five additional types of human-AI algorithm interactions. In this
additional experiment with more than 1,500 participants, we do not find any meaningful differences in advice
credibility between the relatively vague description of a human-AI algorithm used in our experiment, and five
additional, more detailed descriptions of possible human-AI algorithm interactions. We present this additional
evidence in Appendix C.

13We note that when the algorithmic advice is identical to a decision-maker’s initial estimate, the weight of
advice is undefined. In total, we have 179 cases of undefined weight of advice, which represents less than 2% of
all advice observations. Since there is no established approach to correct those undefined values, we omit them
in the respective analyses.
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and Sprinkle, 2002). Importantly, we kept the length of the information presented on the

screens exactly the same across treatments, so that our time measure accurately captures effort

duration. For participants receiving algorithmic advice, effort duration is the sum of the time

spent on the initial price estimation and the time spent on the final price estimation. For

participants in the no advice condition, effort duration measures the time spent on their initial

(and only) price estimation. In our analyses, we discuss differences in the time spent in total

as well as on the initial and final price estimation.

Third, in line with antecedent research on algorithm aversion (e.g., Dietvorst et al., 2015,

2018), we define participants’ performance in the decision-making task in terms of their esti-

mation error, which we measure as the absolute deviation between their final price estimation

and the actual listing price of the apartment on the Airbnb platform.

III.E Experimental Procedures

We recruited participants from experimental laboratory subject pools at three large public

universities in Austria via the recruitment system ORSEE (Greiner, 2015). Each invited person

received a unique invitation link, allowing us track (potential) double participation. We received

1,634 full responses. 117 participants failed an attention check (see below). We excluded

a further 28 participants from the analysis due to potential double participation (using the

same invitation link, though they may indeed be different subjects) or missing contact details,

leaving a remaining sample of 1,489 participants for analysis. Table 1 shows the distribution

of participants over the nine treatment cells.14

The mean age of our participants was 25 years, and 61% were female. About 50% are

undergraduate students, 40% are graduate students, and the remaining 10% either completed

their studies or pursue more advanced postgraduate studies. About 53% of the final sample are

Austrian nationals, 16% are German, with the remaining participants being from 64 different

countries.

TABLE 1: Random sample sizes per treatment
condition

No Advice AI Advice HumanAI Advice
Fixed Pay N = 169 N = 167 N = 186
Performance Pay N = 172 N = 170 N = 156
Tournament Pay N = 159 N = 168 N = 142

14In our initial power calculation we considered a small-to-medium standardized effect size (Cohen’s d) of
0.4 in a t-test between two treatment conditions at 80% power and with an alpha level of 0.05. This implies
a minimum sample size of 99 participants, such that we aimed for 100 participants per cell. In the end we
received 165 valid responses per treatment cell on average. This implies an (average) power of 95% to detect
the above standardized effect size, or respectively allows us to detect even smaller effects at 80% power.
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We believe that our sample of student participants is suitable for our research question and

that it has multiple advantages over samples of professionals. First, our sample fits well to the

task of estimating the price of Airbnb apartments, as more than 75% of our participants had

booked an apartment via this platform in the past. While participants were familiar with the

setting, the task was still sufficiently challenging for them. Second, student participants have

low opportunity costs for participating, they can be more cost-effectively incentivized in the

experiment, and they have steep learning curves, quickly adapting to the experimental envi-

ronment. Third, with participants recruited from established offline university subject pools,

we can rule out that bots participated in our experiment. Frechette (2015) finds in a review

that conclusions reached by using standard student pools mostly generalize to professionals.

Our experiment was self-paced and programmed in Qualtrics. Participants were randomly

assigned to one of the 9 experimental conditions. After an informed consent screen, participants

received instructions conditional on the assigned treatment (see Appendix E for instructions

and screenshots). Before participants proceeded to the actual price estimation task, they had

to correctly answer some comprehension check questions.

As another check of proper participation and attention, we added an “attention check list-

ing” to the 10 actual apartment listings, for which all participants needed to submit “1,000”

as price per night. Participants were informed that there may be an attention check and that

failing to pass it would lead to their exclusion from payoffs.

After completing the main experimental task, participants answered a post-experiment-

questionnaire that included measures for demographics, risk-taking attitudes (item based on

Dohmen et al., 2011; Tasoff and Zhang, 2022), task enjoyment (intrinsic motivation), overcon-

fidence, information reliance, unfamiliarity challenges, and source credibility (item based on

Chen et al., 2022). On the final screen, we also asked them to provide us with their full name

and email address as we needed this information to administrate payments.15

The study ran for about a week in early December 2021. Across all experimental conditions,

the median time to complete the experiment was 19 minutes. After the study concluded, we

randomly selected 102 participants for payment. These participants earned either EUR 0, EUR

50, or EUR 100, depending on their experimental condition (see above) and their performance

in one of their 10 or 20 estimation tasks.16 On average, these selected participants received a

payment of EUR 45.10 via bank transfer. This implies an (ex-post) average payment of EUR

3.09 across the full sample for a 19-minutes task.

15Only one participant did not provide these contact details (and is excluded from the final sample).
16We thus use a “between-subjects random incentive system”. Theoretical and empirical evidence in experi-

mental economics (see, e.g., Azrieli et al., 2018; Charness et al., 2016) suggests that this is incentive-compatible
and preempts wealth effects and hedging strategies, and that participants appear to react more strongly to the
nominal value of a payment than to the probability of receiving that payment (see, e.g., March et al., 2016). We
pay 102 participants instead of 100 as announced because we needed to form matched pairs in the tournament
incentive conditions after random selection of participants.
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IV Results

In the presentation of our results, we start by discussing the distribution of participants’ es-

timates with respect to the advice given by the algorithm. We then present the outcomes in

terms of our three main dependent variables, weight of advice, time spent on the task, and

estimation error. We use regressions to analyze differences between our treatment conditions.

This is followed by a discussion of responses to our post-experimental questionnaire and their

relation to our variables of interest. We conclude this section with a discussion of our results

with respect to the hypotheses laid in Section II.

IV.A Distribution of Estimates

Our participants often deviate from algorithmic advice. The normalized histograms in Figure 1

present the relative deviation of participants’ own price estimations from the algorithmic pre-

dictions. The first histogram focuses on the estimates of participants who do not receive any

algorithmic advice, and thus have to make only one price estimation for each of the 10 listings.

We observe that estimates vary considerably. Most of those estimates are in the range of -50%

to +100% relative to what the algorithm would have advised, with no clearly observable peak.

In general, participants tend to over-estimate apartment prices relative to the algorithm (mean

of +42%, median of +24%, std.dev. of 87%), with some extreme outliers in the right tail. In

the second histogram this is contrasted by the distribution of the initial price estimations by

participants in treatments where algorithmic advice is given. While these are estimates before

the participant received algorithmic advice for the particular task, we observe a compression of

the distribution compared to estimates with no advice at all (mean of +15%, median of +6%,

std.dev. of 54%). This is due to learning effects across tasks: algorithmic advice received for

earlier tasks calibrates estimates given in later tasks.17

However, the spread across estimates is still significant. Finally, the third histogram shows

the distribution of participants’ final price estimations, which they make after receiving al-

gorithmic advice. In contrast to the first two histograms, participants’ price estimations are

almost symmetrically centered around the algorithmic price prediction (mean of +7% and

median of +4%), and the number of outliers is substantially lower (std.dev. of 24%). This

indicates that participants respond to algorithmic advice by moving their estimation towards

17When we compare participants’ error in the initial price estimate in their first task with the error on the
initial estimate in the 10th (last) task, we observe not much change in the no advice condition. The average
initial error even slightly increases from 72.7% to 77.1% (p = 0.034, Sign Test on matched pairs). Contrary, in
the AI advice treatments, participants calibrate their initial estimates through algorithmic advice received in
previous tasks for different apartments. The average error of the initial estimate decreases from 71.5% to 39.0%
(p < 0.001) in the AI-advice condition, and from 83.0% to 40.0% in the human-AI-advice condition (p < 0.001).
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FIGURE 1: Relative Deviation of Initial and Final Price Estimations from
Algorithmic Price Predictions
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the advice. However, while the modal deviation from advice is zero, there is still substantial

variation above and below the algorithmic price prediction.

In Table A.1 in Appendix A we show OLS regressions that predict the true price of an apart-

ment based on the initial individual estimate of a participant and the algorithmic advice she

received (with the constant being omitted). The coefficients thus represent the optimal weights

participants should have given their initial estimate and the algorithmic advice in order to min-

imize prediction errors. While coefficients for the participant’s initial estimate are significantly

different from zero (and thus have informational value), they vary between 0.021 and 0.056,

and the predicted coefficients for algorithmic advice are between 0.847 and 0.877, depending

on algorithm and incentive condition. Thus, participants should weigh the algorithmic advice

much higher than their own estimate. As Figure 2 below shows, the maximum average weight

of advice across experimental conditions is less than 50%, indicating some degree of algorithm

aversion.
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IV.B Aggregate Results

Figure 2 presents means and standard errors of our three dependent variables weight of ad-

vice, time spent on task, and performance (measured as absolute estimation error) for our

fully-crossed factorial design of three incentive treatments (fixed payment, performance-based

incentives, and tournament incentives) with three advice treatments (no advice, AI advice, and

human-AI advice).

Concerning algorithm use, the figures in the first row show that in the AI advice condition,

participants’ weight of advice is substantially higher when they receive performance pay (mean

0.480) or compete in a tournament (mean 0.444) than when they are compensated with a fixed

payment (mean 0.383). This positive effect of financial incentives on algorithm use, relative

to fixed pay, is similar in the human-AI advice condition, although the margins are smaller.

Further, participants whose compensation is contingent on winning a tournament, show a some-

what lower weight of advice than participants whose compensation is performance-based, but

still substantially higher compared to participants who receive a fixed payment. Finally, for

fixed-pay participants the weight of advice is visibly higher in the human-AI condition than in

the AI advice condition, while there are no discernible differences in the performance pay and

tournament treatments.

The second row shows how much time (in seconds) participants spend on each price esti-

mation (“effort duration”), contingent on our treatments. Irrespective of whether they receive

algorithmic advice or not, participants consistently spend more time on the price estimation

task when their compensation is based on performance or contingent on winning a tourna-

ment than when they receive a fixed payment.18 For instance, in the no advice condition, fixed

pay participants work on average for 41.66 seconds, while participants spend 44.76 seconds on

the task when they receive performance pay and 45.12 seconds when they are competing in

a tournament. The difference in the effort duration between unincentivized and incentivized

participants in the AI advice and in the human-AI advice conditions is even bigger. However,

there is no visible difference in the time spent between performance pay and tournament pay.

The last row shows participants’ performance on the task in terms of their absolute esti-

mation error. (Note that the y-scale in the left figure in this row is different to the y-scales of

the middle and right figure.) Participants in the AI advice and the human-AI advice condi-

tions have substantially lower estimation errors compared to participants who do not receive

algorithmic advice. In all three advice conditions, participants who receive performance pay or

compete in tournaments have lower, or at least equally low, estimation errors as participants

who receive a fixed payment. However, as our analysis below will show, these latter differences

are generally not statistically significant at a customary level.

18Differences in the time between the no advice treatment and the two advice treatments should be interpreted
cautiously due to our one-stage vs. two-stage experimental design. See our detailed discussion below.
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FIGURE 2: Treatment Averages for Weight of Advice, Time on the Task, and
Estimation Error

0.30

0.35

0.40

0.45

0.50

W
ei

g
h
t 

o
f 
A

d
v
ic

e

F P T

No Advice

0.30

0.35

0.40

0.45

0.50

F P T

AI Advice

0.30

0.35

0.40

0.45

0.50

F P T

HumanAI Advice

35

40

45

50

55

60

T
im

e 
o
n
 T

a
sk

F P T

35

40

45

50

55

60

F P T

35

40

45

50

55

60

F P T

10

20

30

40

50

E
rr

o
r

F P T

16

18

20

22

24

F P T

16

18

20

22

24

F P T

Notes: F, P, and T stand for treatments ‘Fixed Payment’, ‘Performance-based incentives’ and ‘Tourna-
ment incentives’, respectively. Whiskers indicate standard errors based on OLS regression models con-
trolling for order, apartment, and subject pool fixed effects, with robust SEs clustered by participant.
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IV.C Regression Analyses

In Tables 2, 3, and 4, we present results from different OLS models regressing our three

dependent variables weight of advice, time, and estimation error, respectively, on incentive and

algorithmic advice treatment indicators. All regressions use robust standard errors clustered

by participant and control for apartment, order, and subject pool fixed effects. Depending on

the specification, we also include demographic control variables for gender, age, education, and

nationality.19

Weight of Advice. Table 2 shows OLS regression results for weight of advice (based only

on observations from the advice treatments). In model 1, we regress the weight of advice on a

dummy variable for performance pay as well as a dummy variable for tournament incentives.

In model 2, we include a dummy variable for the framing of the algorithm as human-AI advice.

In the third model we include interaction terms of human-AI advice with performance pay as

well as with tournament incentives. Finally, in model 4, we include all of the aforementioned

dummies and interaction terms, and control for demographic characteristics. Across all models,

we find that both performance pay as well as tournament incentives have a significant and

positive effect on the weight of advice. We observe a difference of 0.031 in the weight of

advice between performance-based and tournament incentives, which, however, is statistically

not significant (p = 0.128).20

Regressions (2), (3) and (4) indicate a positive main effect of human-AI advice (compared

to “regular” AI advice) on advice utilization. However, as the interaction effects in model

4 indicate, this effect is mainly driven by participants with a fixed compensation contract,

while the human-AI framing makes little difference for participants with performance-based

incentives (β = 0.000, p = 0.983) or tournament incentives (β = 0.011, p = 0.554).21

Time Spent on Task. In Table 3, we present results from six OLS regression models of time

spent on the experimental task. Independents include dummy variables for performance pay and

tournament incentives, for human-AI advice, and their interaction effects. As before, regressions

19We also ran all regressions reported here and below as (1) Tobit models with robust standard errors
clustered by participant, (2) random (participant) effects models with robust standard errors, and (3) Tobit
random effects models. All findings are identical in terms of direction and statistical significance, and thus
our inferences remain unchanged. These regressions are included in our replication package. Tables A.2, A.3,
and A.4 in Appendix A report results from separate OLS regression models for the first task encountered by a
participant, tasks 2-5, and tasks 6-10, showcasing the robustness of our results.

20When running the regression using only data from the AI advice conditions, the difference is 0.035 (p =
0.084).

21Table A.5 in Appendix A reports the same regressions but with the uncensored weight of advice as de-
pendent. Table A.6 shows that the treatment effects are robust across split-samples of multiple measures of
participants’ task familiarity and overconfidence.
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TABLE 2: OLS regressions of weight of advice on treatments

(1) (2) (3) (4)
PerformancePay 0.071*** 0.073*** 0.097*** 0.095***

(0.015) (0.015) (0.021) (0.021)
Tournament 0.041*** 0.042*** 0.063*** 0.064***

(0.014) (0.014) (0.020) (0.020)
HumanAIAdvice 0.022* 0.051** 0.050**

(0.012) (0.021) (0.021)
HumanAIAdvice × PerfPay -0.050 -0.048

(0.030) (0.030)
HumanAIAdvice × Tourn -0.040 -0.044

(0.028) (0.028)
IsFemale -0.011

(0.012)
Age 0.001

(0.001)
HasUnivDegree -0.028**

(0.013)
IsAustrian -0.020

(0.013)
Constant 0.450*** 0.438*** 0.423*** 0.442***

(0.021) (0.022) (0.023) (0.041)

Observations 9,711 9,711 9,711 9,711
R-squared 0.026 0.027 0.028 0.030
N Participants 989 989 989 989

Notes: The regressions are based only on observations from the advice treatments. Ro-
bust standard errors clustered by participant. *, **, and *** indicate statistical signifi-
cance at the 10%, 5%, and 1% level, respectively. All regressions control for apartment,
order, and subject pool fixed effects.

control for apartment, order, and subject pool fixed effects.22 The first two models use the total

time spent on the estimation task (i.e., the sum of the time spent on the initial estimation task

before advice and the final estimation task after receiving advice) as the dependent variable.

Model 1 specifically focuses on overall incentive effects over all treatments, while model 2 only

uses data from the two-stage advice treatments and also distinguishes incentive effects between

AI advice (baseline) and human-AI advice conditions. The next three models only consider

the time spent on the initial estimation task, before advice, either for all treatments (3), only

22We ran the same models also with demographic controls included, reported in Table A.7 in Appendix A.
Results for treatment effects reported here do not differ in any way. Some of these additional regressions indicate
that male, younger, and Austrian participants as well as those who already completed a university degree tend
to need less time for the experimental task.
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the no advice treatments (4, where initial estimate time equals total time), or only the advice

treatments (5). The last regression model 6 uses the time spent on the second estimation task

(in the advice treatments) as dependent.

TABLE 3: OLS regressions of time spent on task on treatments

Time spent on
Dependent Both estimates Initial estimate Final estimate
Conditions All Advice All No Advice Advice

only advice only
Model (1) (2) (3) (4) (5) (6)

PerformancePay 5.137*** 7.287*** 4.942*** 3.205 6.464*** 0.823
(1.549) (2.793) (1.401) (2.437) (2.379) (0.668)

Tournament 4.854*** 5.871** 4.311*** 3.641 5.501** 0.370
(1.539) (2.543) (1.377) (2.396) (2.133) (0.728)

HumanAIAdvice -0.294 0.432 -0.726
(2.158) (1.814) (0.547)

HumanAIAdvice -2.046 -1.999 -0.046
× PerfPay (3.906) (3.400) (0.845)
HumanAIAdvice -0.768 -1.729 0.961
× Tourn (3.910) (3.339) (0.931)
Constant 90.163*** 91.859*** 73.510*** 87.179*** 66.331*** 25.528***

(2.175) (2.869) (2.002) (3.690) (2.427) (0.905)

Observations 14,890 9,890 14,890 5,000 9,890 9,890
R-squared 0.178 0.179 0.135 0.188 0.115 0.239
N Participants 1,489 989 1,489 500 989 989

Notes: Robust standard errors clustered by participant. *, **, and *** indicate statistical significance at the
10%, 5%, and 1% level, respectively. All regressions control for apartment, order, and subject pool fixed effects.

Over all conditions (model 1), we find that participants who receive performance pay or

compete in a tournament spend significantly more time in total on the price estimation task

than participants who receive a fixed payment. However, as models 2, 4, 5, and 6 show, this

effect is mainly driven by the effects of financial incentives on time spent on the initial estimate

in the advice treatments, where participants form their own judgment before receiving advice.

The coefficients for financial incentives for the initial estimate in the no-advice treatments

(model 4), and for the second estimate (model 6), are positive but do not reach statistical

significance.

As Figure 2 shows, in the AI advice and human-AI advice conditions the participants spend

more total time on the price estimation tasks than when receiving no advice. This, however, is

just an artifact of our two-stage design in the advice conditions, relative to the one stage in the

no advice condition. Within advice treatments, whether the advice has a human component

or not (human-AI advice vs. AI advice) has no effect on time spent on tasks.
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In the regressions reported in Table A.8 in Appendix A we explore treatment effects on

time spent on own estimate in more detail. To ease interpretability of treatment interactions,

in model 1 we pool the performance and tournament conditions (Financial Incentives) as well as

the two advice conditions (Algorithmic Advice). In model 2 we only pool the advice conditions,

in model 3 only the incentive conditions, and in model 4 we report all individual treatment

conditions and their interactions. The first result to point out is that the effect of advice on

time spent on the initial estimate is negative in all models. That is, while the total time spent

on the estimation task increases when introducing the second advice stage, the time spent

on forming one’s own estimate decreases. The robust positive incentive effects in the advice

treatments (evidenced in Table 3 and by post-hoc F tests at the bottom of Table A.8) can thus

be understood as mitigating this negative effect of adding an advice stage on time spent on the

initial estimate. In the conditions without advice, the positive effect of financial incentives is

statistically weakly significant only when we pool the incentive conditions.

In sum, without advice and only one estimate to submit, financial incentives have a positive

but statistically not significant effect on time spent on task. Adding an advice stage shifts

some of the time spent on the own estimate to the second stage, but with financial incentives,

much of this reduction in time is mitigated. Financial incentives have no effect on time spent

in the second stage of the advice treatments.

Estimation Error. In Table 4, we present results from five different OLS regression models

mirroring the models on weight of advice in Table 2, only here with the estimation error as the

dependent variable. The regression models yield highly significant main effects of AI advice and

human-AI advice, which shows that, in our experimental environment, individuals who have

access to an algorithmic decision aid perform substantially better than individuals without

such aid. The effects of financial incentives through performance pay or a tournament on the

estimation error are negative throughout all models (implying a positive effect on performance).

However, they do not reach statistical significance (with the exception of a weakly significant

negative effect of tournament incentives in model 3).

Higher weight of advice improves performance. In Table A.9 in Appendix A we report similar

regressions as the ones in Table 4, but with the weight of advice included as an explanatory

variable. The results show that a higher weight of advice generally leads to a lower estimation

error. One reason why we do not find higher performance in the incentive treatments despite

higher advice utilization may be due to significant heterogeneity in initial estimates in our

experimental task and other noise. In Appendix B we report simulations that separately reduce

heterogeneity/noise in weight of advice and initial estimates across the sample, which lend some

support to this explanation. Heterogeneity may also be non-random. For example, if, in line
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TABLE 4: OLS regressions of estimation error on treatments

(1) (2) (3) (4) (5)
PerformancePay -0.183 -0.974 -1.930 -1.998

(1.771) (1.613) (4.676) (4.656)
Tournament -2.561 -2.683* -6.158 -6.154

(1.562) (1.407) (4.126) (4.121)
AIAdvice -23.225*** -23.191*** -25.510*** -25.486***

(1.803) (1.796) (3.309) (3.303)
HumanAIAdvice -23.596*** -23.631*** -25.578*** -25.557***

(1.810) (1.804) (3.317) (3.313)
AIAdvice × PerfPay 1.502 1.342

(4.765) (4.768)
AIAdvice × Tourn 5.568 5.557

(4.162) (4.163)
HumanAIAdvice × PerfPay 1.277 1.136

(4.755) (4.750)
HumanAIAdvice × Tourn 4.767 4.516

(4.173) (4.201)
IsFemale = 1 -1.777

(1.419)
Age -0.222*

(0.119)
HasUnivDegree = 1 -0.175

(1.357)
IsAustrian = 1 1.482

(1.199)
Constant 18.155*** 32.074*** 33.345*** 34.713*** 40.242***

(2.700) (2.635) (3.048) (4.301) (6.028)

Observations 14,890 14,890 14,890 14,890 14,890
R-squared 0.055 0.152 0.153 0.154 0.156
N Participants 1,489 1,489 1,489 1,489 1,489

Notes: Robust standard errors clustered by participant. *, **, and *** indicate statistical significance at the
10%, 5%, and 1% level, respectively. All regressions control for apartment, order, and subject pool fixed effects.

with Hypothesis 1a, financial incentives let participants put more unproductive effort into initial

estimates such that initial errors are higher, but also lead to a higher weight of advice, then the

net effect on eventual estimation errors may be zero. However, in our analysis in Appendix B

we do not find support for such a mechanism: effects of financial incentives on initial estimate

errors in the advice treatment conditions are statistically non-significant (and mostly negative).
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IV.D Additional Insights from the Post-Experiment Questionnaire

Our post-experimental questionnaire obtained information on participants’ attitudes and per-

ceptions of the experimental tasks, allowing for some sanity checks of our results and explorative

analysis of mechanisms. In Table 5, we display results from regressing the weight of advice on

items from the post-experiment questionnaire and participants’ demographic characteristics,

while controlling for experimental conditions as well as apartment, order, and subject pool

fixed effects.

In model 1, we include six items that measure how familiar participants are with the ex-

perimental task of estimating prices of Airbnb apartments in Vienna. We find that individuals

who have previously used the online platform Airbnb to book an apartment have a significantly

lower weight of advice, while self-reported unfamiliarity with the price estimation task23 is

positively related to participants’ advice utilization. Self-assessed knowledge of Vienna, resi-

dency in Vienna, and previous use of an AI algorithm in a similar task are not associated with

participants’ weight of advice.

Model 2 focuses on three personality characteristics of participants. We find that task en-

joyment as well as the willingness to take risks are unrelated to advice utilization. Interestingly,

we obtain a significant negative effect of overconfidence on the weight of advice. The binary in-

dicator overconfidence equals 1 if a participant overestimated his or her own ability to correctly

estimate prices of Airbnb apartments (i.e., the actual average relative error is greater than the

expected average relative error). In model 3 we include questionnaire items from models 1 and

2 simultaneously and all of our inferences remain unchanged.

Model 4, we find a significant positive association between participants’ perception of the

algorithm as a credible source of advice in the price estimation task and their weight of advice.

Furthermore, we observe a significant positive relation between participants’ self-stated use of

algorithmic advice and the measured weight of advice, as well as a significant negative relation

between their self-stated use of contextual information and the weight of advice. These results

on self-stated variables serve as sanity checks for our results on observational variables.24

In Table 6 we report regression results where we use the questionnaire items not as predictors

of weight of advice but rather as dependent variables. In column 1, we regress task enjoyment

on our treatment dummies for performance pay, tournament, AI advice, and human-AI advice,

while controlling for subject pool fixed effects. Our findings indicate that incentivized par-

ticipants perceive the task as significantly less enjoyable than unincentivized participants who

23The construct “unfamiliarity” is based on three items that ask participants how (un)familiar they are with
the price setting of Airbnb apartments in Vienna.

24In Table A.6 in Appendix A, we report results from OLS regressions which show that our results on
treatment effects on the weight of advice are robust across split-samples of multiple measures of participants’ task
familiarity and overconfidence. These results also indicate that our findings are not driven by task complexity.
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TABLE 5: OLS Regressions of Weight of Advice on Questionnaire Items

(1) (2) (3) (4)
IsFemale -0.013 -0.015 -0.017 -0.006

(0.012) (0.012) (0.012) (0.011)
Age 0.001 0.001 0.001 0.002

(0.001) (0.001) (0.001) (0.001)
HasUnivDegree -0.022* -0.024* -0.017 -0.017

(0.013) (0.013) (0.013) (0.012)
IsAustrian -0.021 -0.027** -0.025** -0.007

(0.013) (0.012) (0.013) (0.011)
Resident of Vienna [0/1] 0.013 0.015

(0.024) (0.024)
Self-assessed Vienna knowledge [0-10] -0.002 -0.003

(0.004) (0.004)
Has used Airbnb [0/1] -0.055*** -0.054***

(0.015) (0.014)
× Has used Airbnb in Vienna [0/1] 0.001 0.003

(0.017) (0.017)
Unfamiliarity with task [0-10, avg. of 3 items] 0.011*** 0.010***

(0.003) (0.003)
Previously used AI in similar task [0/1] 0.022 0.012

(0.018) (0.018)
Task enjoyment [0-10] -0.003 0.001

(0.003) (0.003)
Willingness to take risks [0-10] 0.003 0.004

(0.003) (0.003)
Overconfident (real error > exp. error) [0/1] -0.069*** -0.064***

(0.013) (0.013)
AI is credible source for task [0-10] 0.013***

(0.003)
Self-stated use of alg. advice [0-100%] 0.003***

(0.000)
Self-stated use of context info [0-100%] -0.002***

(0.000)
Constant 0.446*** 0.507*** 0.466*** 0.386***

(0.055) (0.051) (0.063) (0.050)

Observations 9,711 9,711 9,711 9,711
R-squared 0.041 0.038 0.049 0.085
N Participants 989 989 989 989

Notes: Robust standard errors clustered by participant. *, **, and *** indicate statistical significance at the
10%, 5%, and 1% level, respectively. All regressions control for apartment, order, and subject pool fixed effects.
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TABLE 6: OLS Regressions of Questionnaire Answers on
Treatments

(1) (2) (3) (4)
Task Algorithm is Use of Use of

enjoyment Credible algorithm context info
PerformancePay -0.445*** 0.206 7.779*** -0.591

(0.121) (0.139) (1.823) (1.215)
Tournament -0.376*** 0.291** 6.988*** 0.443

(0.118) (0.137) (1.741) (1.176)
AIAdvice 0.662***

(0.124)
HumanAIAdvice 0.755*** 0.219* 2.900** -0.399

(0.125) (0.112) (1.455) (0.986)
Constant 7.505*** 6.024*** 47.086*** 82.298***

(0.148) (0.193) (2.200) (1.521)

Observations 1,489 989 989 989
R-squared 0.050 0.009 0.029 0.001

Notes: Robust standard errors in parentheses. *, **, and *** indicate statistical sig-
nificance at the 10%, 5%, and 1% level, respectively. All regressions control for subject
pool fixed effects.

receive a fixed payment. Presumably, the incentive-induced pressure to perform well under-

mines individuals’ intrinsic task motivation. Further, participants who receive advice from an

AI or a human-AI framed algorithm enjoy the task of estimating apartment prices more than

individuals who do not receive advice. An explanation could be that by receiving algorithmic

advice, the task is perceived to be easier and less strenuous, increasing participants’ intrinsic

task motivation.

The regression reported in model 2 relates the perceived credibility of the algorithm to

our treatment conditions. Participants who receive incentives perceive the algorithm to be a

more credible source of advice than participants who receive a fixed payment, but the effect

is significant only for the tournament condition. When the algorithm is framed as human-AI

advice, the perceived source credibility is weakly significantly higher than when the algorithm

is framed as AI advice.25

In model 3 we regress participants’ self-reported use of the algorithm on our incentive and

algorithm framing treatments. In line with our results on observed weight of advice, we find

that performance pay and tournament incentives are significantly and positively related to the

25This effect remains positive but becomes non-significant when running this model separately for the three
compensation contract treatments.
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stated extent of algorithm use. This provides corroborating evidence that financial incentives

have a positive effect on algorithmic advice utilization. We also observe that participants in

the human-AI advice condition self-report to rely significantly more on the algorithm than

participants in the AI advice condition. In model 4 we regress participants’ self-reported use

of contextual information on treatment indicators but do not observe significant effects.26

IV.E Discussion

Competing Hypotheses 1a and 1b. Our first set of hypotheses posits the tension between

(1a) previous research suggesting that financial incentives “backfire” in the presence of algo-

rithmic decision-aids due to increased but unproductive individual effort, and (1b) economic-

theory-based reasoning that financial incentives translate into more use of a sufficiently accurate

algorithm.

As described in our discussions of Table 2, we find evidence that individuals who are com-

pensated with performance-based or tournament incentives rely significantly more on the algo-

rithmic advice in our task than individuals who receive a fixed payment, providing support for

Hypothesis 1b rather than Hypothesis 1a. The explanation for Hypothesis 1a includes increased

individual effort, while a prediction of standard utility theory is ambiguous in our experimental

setup: financial incentives may increase effort into individual (first-stage) estimates but may

reduce effort in advised (second-stage) estimates because the decision-maker would follow the

advice instead of doing (more) effortful analyses. Our finding that overall effort duration in-

creases with financial incentives, mainly due to increased time in the initial estimate formation,

is consistent with both mechanisms.

In terms of performance, we observe that individuals who receive tournament incentives

make better price estimations than individuals who receive a fixed payment, but these effects

are not statistically significant in most cases. However, our results are clearly not in line with

Hypothesis 1a, which predicted a backfiring effect of financial incentives on performance.

That said, incentives increase the time spent on the initial estimate and increase the weight

of beneficial algorithmic advice, but do not result in significant improvements of performance.

In terms of time spent, performance effects may be specific to the task. Namely, the nature

of our prediction task (without feedback) may be that task-relevant skills cannot be improved

by spending more time on the task. The question why – with an advantageous AI prediction

aid – a (significantly) higher weight of advice in treatments with financial incentives does

26In Table A.10 in Appendix A we run these four models with treatment interaction terms. The only
additional insights gained are that the higher rating of task enjoyment under (non-humanised) AI Advice seems
to be mainly driven by observations in the tournament condition, and that the weakly significant effect of
Human-AI Advice (vs regular AI advice) on perceived credibility is statistically not significant anymore when
splitting up by treatments, as mentioned in the previous note.
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not directly translate into lower prediction error, is not straightforward to answer. The final

prediction error is not only subject to the weight of advice but also to the initial estimate

performance as well as other idiosyncratic effects when submitting the second estimate. It

appears that while heterogeneity in weight of advice is small enough to identify treatment

effects of financial incentives, significant heterogeneity in initial estimates in our experimental

task and other noise obfuscate a translation to smaller estimation errors. Simulations that

reduce heterogeneity/noise in weight of advice and initial estimates across the sample lend

some support to this conjecture (Appendix B).

Thus, our experimental findings provide a more nuanced picture on how incentives influence

the interaction between human decision-makers and algorithms. While we find support for

the presumption that incentives trigger decision-makers to exert more effort (i.e., they work

longer), we do not observe that this additional effort duration undermines algorithm use.

Rather, financial incentives lead to a higher reliance on algorithmic advice, and effects on

performance are non-negative. Overall, our results indicate that financial incentives help

(and not hinder) decision-making with algorithmic advice. However, while effort costs for

participants are relatively low in our setting, they may be higher in practice. High costs of

time or effort may mitigate the effects of incentives on time spent on the individual estimate.

At the same time, high effort costs together with an increase of time spent and low or zero

performance effects may yield overall negative effects of incentives on efficiency.

Hypothesis 2. Our second hypothesis postulates that decision-makers with tournament

incentives rely less on algorithmic advice and as a consequence perform worse than decision-

makers with performance-based incentives. Although our empirical results are directionally

consistent with this prediction in terms of the weight of advice, the differences between

performance-based and tournament incentives are rather small and typically do not reach

statistical significance.27 Both types of financial incentives lead to consistently higher algorithm

use, greater effort duration, and no performance drop, compared to fixed payments. Therefore,

we conclude that both, performance-based and tournament incentives, have positive effects in

decision-making tasks with algorithmic advice.

Hypothesis 3. Based on a contemporaneous stream of research on algorithm aversion, which

suggests that decision-makers prefer to receive advice from human experts rather than algo-

rithms, we hypothesize that reliance on algorithmic advice is higher when an algorithm is framed

27One reason why we only find small differences between effects of individual performance-based and tourna-
ment incentives could be that, in order to keep stake sizes and payoff ranges similar, we used an arguably rather
weak form of tournament contracts (one loser and one winner in each pair). Any differences may have been
more pronounced if we had used a tournament design with higher competition and a larger spread of payoffs
(e.g., the best performing individual out of all participants receives a large reward of EUR 1,000).
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as also considering human expertise. The results of our experiment provide some support for

this hypothesis. Individuals’ weight of advice is higher when the algorithm is presented as

human-augmented. The positive effect of the human-AI framing on advice utilization is partic-

ularly strong for individuals with fixed-pay contracts, while it has little effect on individuals with

performance-based or tournament contracts. Findings from the post-experiment questionnaire

corroborate this conclusion, in that the perceived credibility of the human-AI framed advice is

higher compared to the AI advice. Thus, we conclude that subtle changes in the framing of an

otherwise identical algorithm may have substantial effects on acceptance of algorithmic advice,

especially for decision-makers who are not exposed to more direct monetary incentives.

V Conclusion

We investigate how the design of decision-makers’ compensation contracts and the framing

of an artificial intelligence algorithm influence advice utilization, exerted effort duration, and

eventual performance. Results from our experimental study show that, even though algorithm

aversion may exist in some task settings, financial incentives do not generally “backfire” in

terms of how they motivate decision-makers to consider (augmented) algorithmic advice in

their judgments. In our contemporary setting with a contextually-rich price estimation task,

we find that decision-makers with performance-based or tournament incentives rely significantly

more on algorithmic advice than decision-makers who receive a fixed payment. We also observe

that the use of the algorithmic decision aid is stronger when the involvement of human ex-

perts in the development of the AI algorithm is highlighted to decision-makers, particularly for

decision-makers with fixed-pay contracts. Thereby, our study contributes not only to concur-

rent academic literature on algorithm aversion in disciplines such as accounting, management,

economics, and psychology, but also to managerial practice.

Our results contrast prominent earlier findings of a backfiring effect of financial incentives in

presence of an algorithmic decision aid (in particular Ashton, 1990; Awasthi and Pratt, 1990).

Our study constitutes a conceptual replication rather than a direct one. For example, Ashton

(1990) used a different task (predicting Moody’s bond ratings based on three financial ratios as

input), the algorithmic decision-aid was simpler (a simple weighing of the three financial ratios),

and participants were 182 employees of an auditing firm. Awasthi and Pratt (1990) had 70

students work on three accounting-related problems. We use a different, more modern price

prediction task, employ a more sophisticated algorithm, and draw on a large sample of almost

1500 students with heterogeneous backgrounds. In addition, our experiment took place about

30 years later, and attitudes towards algorithmic advice may have significantly changed over

time. Thus, our main message with respect to this older literature is that the still prominently

cited backfiring effect may not hold anymore.
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As every study, our experiment is subject to limitations, which provide ample opportunities

for future research. First, we use a specific context-rich task in which participants have to

estimate the prices of Airbnb apartments. In light of research showing that algorithm aversion

is a task-dependent phenomenon (Castelo et al., 2019; Hertz and Wiese, 2019), it could well be

the case that our findings are not generalizable to other, more subjective tasks used in previous

studies, such as detecting emotions, predicting the funniness of jokes, or providing dating advice.

Second, to the best of our knowledge, we are also one of the first studies that directly compares

decision-makers’ reliance on AI advice with human-AI combined advice instead of the typically

used human-expert advice. Although we would expect directionally similar results when using

purely human expert advice, these effects remain an open empirical question to explore. Third,

as most laboratory experiments, we rely on student participants. Although we use a broad

sample of undergraduate and postgraduate students from three different universities, one could

argue that older and more experienced individuals may behave differently when it comes to using

advice from algorithmic decision aids. However, it is less clear why treatment effects would be

different for a different subject population. Fourth, our experiment intentionally abstracts away

from many strategic considerations that typically arise in organizational contexts. For instance,

decision-makers within firms could expect that by relying on algorithmic advice instead of

making own judgments, it becomes more likely that they might eventually be fully replaced by

an algorithm. Such a dynamic perspective on human-algorithm interactions may be a fruitful

field of future research.

Finally, in line with our expectations, we find that decision-makers who receive a fixed com-

pensation have a higher weight of advice when the algorithm is framed as including also human

expert judgment than when it is framed as a pure AI algorithm. At the same time, we observe

no significant uptake in advice utilization from such human framing of the algorithmic advice

when decision-makers are compensated with performance-based or tournament incentives. A

potential explanation could be that financial incentives make decision-makers act more ratio-

nally and thus they are less influenced by the framing of the algorithmic advice as long as the

accuracy of the algorithmic prediction is identical. We encourage future research to explore

these questions.
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Dargnies, M. P., Hakimov, R., and Kübler, D. (2022). Aversion to hiring algorithms: Transparency, gender

profiling, and self-confidence. Unpublished Working Paper.
Dell’Acqua, F., McFowland, E., Mollick, E. R., Lifshitz-Assaf, H., Kellogg, K., Rajendran, S., Krayer, L., Cande-

lon, F., and Lakhani, K. R. (2023). Navigating the jagged technological frontier: Field experimental evidence
of the effects of ai on knowledge worker productivity and quality. Harvard Business School Technology &
Operations Mgt. Unit Working Paper 24-013.
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Appendix

A Additional tables and figures

TABLE A.1: OLS Regressions predicting the true price based on
participant’s initial estimate and provided algorithmic advice

No Advice AI Advice HumanAI advice

Initial Estimate 0.026*** 0.021*** 0.053*** 0.056*** 0.050*** 0.046***
(0.005) (0.007) (0.009) (0.010) (0.009) (0.010)

IniE × PerfPay 0.005 0.020 0.031
(0.011) (0.018) (0.021)

IniE × Tournament 0.013 -0.018 -0.004
(0.010) (0.018) (0.019)

Alg. Advice 0.871*** 0.877*** 0.849*** 0.847*** 0.853*** 0.856***
(0.006) (0.010) (0.010) (0.010) (0.009) (0.011)

AlgA × PerfPay -0.006 -0.022 -0.034
(0.014) (0.019) (0.023)

AlgA × Tournament -0.015 0.019 0.005
(0.013) (0.019) (0.020)

Observations 5,000 5,000 5,050 5,050 4,840 4,840
R-squared 0.937 0.937 0.938 0.938 0.938 0.938
N Participants 500 500 505 505 484 484

Notes: The dependent in all regressions is the true price of the apartment, and the constant is omit-
ted. Robust standard errors clustered by participant. *, **, and *** indicate statistical significance
at the 10%, 5%, and 1% level, respectively.
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TABLE A.2: OLS regressions of weight of advice across different periods

Task 1 Tasks 2-5 Tasks 6-10
(1) (2) (3) (4) (5) (6)

PerformancePay 0.143*** 0.136*** 0.093*** 0.090*** 0.090*** 0.090***
(0.035) (0.035) (0.024) (0.024) (0.024) (0.024)

Tournament 0.045 0.048 0.057** 0.059** 0.070*** 0.071***
(0.035) (0.035) (0.024) (0.024) (0.023) (0.023)

HumanAIAdvice 0.089*** 0.089*** 0.039 0.039 0.052** 0.050**
(0.034) (0.034) (0.024) (0.024) (0.024) (0.024)

HumanAIAdvice × PerfPay -0.111** -0.109** -0.045 -0.044 -0.042 -0.041
(0.049) (0.049) (0.035) (0.035) (0.034) (0.034)

HumanAIAdvice × Tourn -0.049 -0.058 -0.026 -0.032 -0.051 -0.051
(0.048) (0.048) (0.033) (0.033) (0.033) (0.033)

IsFemale -0.017 -0.015 -0.005
(0.021) (0.014) (0.014)

Age 0.001 0.001 0.000
(0.002) (0.002) (0.002)

HasUnivDegree -0.056** -0.037** -0.016
(0.022) (0.016) (0.015)

IsAustrian 0.009 -0.006 -0.034**
(0.021) (0.015) (0.015)

Constant 0.420*** 0.422*** 0.358*** 0.359*** 0.303*** 0.333***
(0.043) (0.069) (0.030) (0.049) (0.027) (0.047)

Observations 972 972 3,886 3,886 4,853 4,853
R-squared 0.033 0.041 0.012 0.015 0.038 0.040
N Participants 972 972 989 989 989 989

Notes: Robust standard errors clustered by participant. *, **, and *** indicate statistical significance at the
10%, 5%, and 1% level, respectively. All regressions control for apartment, order, and subject pool fixed effects.
Models 1 and 2 have fewer than 989 participants since for some of them WOA is not defined (initial estimate =
algorithmic advice).
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TABLE A.3: OLS regressions of time spent on task across different periods

Task 1 Tasks 2-5 Tasks 6-10
Advice Advice Advice

All only All only All Only

PerformancePay 15.428*** 24.012*** 5.195*** 8.136** 3.049** 3.552
(3.706) (6.920) (1.791) (3.272) (1.369) (2.357)

Tournament 13.451*** 20.327*** 4.163*** 4.925* 3.750** 4.020*
(3.823) (7.699) (1.598) (2.745) (1.493) (2.324)

HumanAIAdvice 4.440 -1.579 0.015
(5.079) (2.262) (2.150)

HumanAIAdvice × PerfPay -21.442** -1.915 1.156
(9.398) (4.551) (3.426)

HumanAIAdvice × Tourn -9.780 -0.239 0.128
(10.200) (3.984) (3.799)

Constant 77.588*** 72.329*** 45.909*** 47.650*** 35.644*** 35.369***
(5.595) (7.455) (2.061) (2.785) (1.777) (2.392)

Observations 1,489 989 5,956 3,956 7,445 4,945
R-squared 0.032 0.049 0.014 0.018 0.015 0.020
N Participants 1,489 989 1,489 989 1,489 989

Notes: Robust standard errors clustered by participant. *, **, and *** indicate statistical significance at the 10%,
5%, and 1% level, respectively. All regressions control for apartment, order, and subject pool fixed effects.
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TABLE A.4: OLS regressions of estimation error across different periods

Task 1 Tasks 2-5 Tasks 6-10
(1) (2) (3) (4) (5) (6)

PerformancePay -1.703 -0.668 -2.112 -5.710 0.063 0.602
(2.522) (6.939) (1.801) (5.173) (1.587) (4.563)

Tournament -4.125* -5.675 -4.196** -10.417** -1.241 -2.914
(2.438) (6.382) (1.704) (4.941) (1.285) (3.754)

AIAdvice -17.672*** -17.006*** -23.348*** -28.861*** -24.069*** -24.403***
(2.707) (5.555) (1.954) (4.330) (1.809) (2.644)

HumanAIAdvice -18.858*** -19.768*** -23.514*** -27.425*** -24.631*** -25.258***
(2.682) (5.436) (2.004) (4.358) (1.786) (2.638)

AIAdvice × PerfPay -2.945 5.812 -1.313
(7.540) (5.360) (4.641)

AIAdvice × Tourn 1.066 10.709** 2.317
(6.884) (5.005) (3.820)

HumanAIAdvice × PerfPay -0.726 4.316 -0.854
(7.352) (5.355) (4.622)

HumanAIAdvice × Tourn 2.976 7.644 2.398
(6.764) (5.073) (3.828)

IsFemale -4.314* -1.888 -1.175
(2.339) (1.524) (1.420)

Age -0.316 -0.176 -0.238**
(0.210) (0.145) (0.112)

HasUnivDegree -1.261 0.255 -0.347
(2.205) (1.509) (1.346)

IsAustrian -0.956 2.409* 1.268
(2.045) (1.378) (1.147)

Constant 30.640*** 42.169*** 33.477*** 40.378*** 30.634*** 36.675***
(4.609) (10.593) (4.133) (7.999) (1.934) (3.930)

Observations 1,489 1,489 5,956 5,956 7,445 7,445
R-squared 0.115 0.120 0.156 0.161 0.166 0.168
N Participants 1,489 1,489 1,489 1,489 1,489 1,489

Notes: Robust standard errors clustered by participant. *, **, and *** indicate statistical significance at the 10%, 5%,
and 1% level, respectively. All regressions control for apartment, order, and subject pool fixed effects.
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TABLE A.5: OLS Regressions of uncensored weight of advice
on treatments

(1) (2) (3) (4)
PerformancePay 0.104*** 0.107*** 0.112*** 0.112***

(0.026) (0.026) (0.032) (0.032)
Tournament 0.072*** 0.074*** 0.109*** 0.111***

(0.023) (0.023) (0.032) (0.031)
HumanAIAdvice 0.040** 0.066** 0.065**

(0.020) (0.032) (0.031)
HumanAIAdvice × PerfPay -0.008 -0.007

(0.052) (0.052)
HumanAIAdvice × Tourn -0.071 -0.074*

(0.045) (0.044)
IsFemale 0.006

(0.020)
Age 0.003

(0.003)
HasUnivDegree -0.034

(0.021)
IsAustrian -0.036*

(0.022)
Constant 0.588*** 0.567*** 0.553*** 0.522***

(0.044) (0.044) (0.046) (0.068)

Observations 9,711 9,711 9,711 9,711
R-squared 0.012 0.013 0.014 0.015
N Participants 989 989 989 989

Notes: Dependent is the weight of advice, but not censored between 0 and 1. Robust
standard errors clustered by participant. *, **, and *** indicate statistical significance
at the 10%, 5%, and 1% level, respectively. All regressions control for apartment, order,
and subject pool fixed effects.
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TABLE A.6: OLS regressions of weight of advice across split-samples related to
unfamiliarity and overconfidence

Vienna knowledge Airbnb experience Task familiarity Overconfident
Low High Low High Low High No Yes

PerformancePay 0.097*** 0.082** 0.142*** 0.080*** 0.061** 0.126*** 0.148*** 0.081***
(0.027) (0.034) (0.045) (0.024) (0.027) (0.035) (0.038) (0.026)

Tournament 0.051** 0.083** 0.079* 0.050** 0.022 0.126*** 0.053 0.078***
(0.026) (0.032) (0.042) (0.023) (0.023) (0.036) (0.035) (0.025)

HumanAIAdvice 0.049* 0.042 0.047 0.049** 0.014 0.100*** 0.056* 0.047*
(0.026) (0.034) (0.043) (0.024) (0.026) (0.034) (0.032) (0.026)

HumanAIAdvice × PerfPay -0.066* -0.002 -0.112* -0.030 0.002 -0.112** -0.085 -0.033
(0.037) (0.050) (0.063) (0.034) (0.037) (0.048) (0.054) (0.036)

HumanAIAdvice × Tourn -0.026 -0.068 -0.059 -0.032 0.016 -0.117** -0.067 -0.036
(0.035) (0.046) (0.058) (0.032) (0.034) (0.047) (0.048) (0.034)

IsFemale 0.000 -0.032 0.006 -0.018 -0.028* 0.012 -0.032 -0.007
(0.015) (0.021) (0.026) (0.014) (0.015) (0.020) (0.021) (0.014)

Age 0.000 0.001 -0.002 0.001 0.002 0.000 0.004 0.001
(0.002) (0.002) (0.002) (0.002) (0.002) (0.003) (0.003) (0.002)

HasUnivDegree -0.019 -0.038* -0.030 -0.019 -0.025 -0.033 -0.044* -0.020
(0.016) (0.023) (0.028) (0.015) (0.016) (0.021) (0.025) (0.016)

IsAustrian -0.011 -0.026 -0.006 -0.029** -0.034** 0.007 -0.035 -0.019
(0.016) (0.021) (0.026) (0.014) (0.015) (0.021) (0.022) (0.015)

Constant 0.449*** 0.425*** 0.524*** 0.420*** 0.431*** 0.449*** 0.458*** 0.405***
(0.052) (0.070) (0.070) (0.049) (0.049) (0.075) (0.077) (0.049)

Observations 6,546 3,165 2,370 7,341 5,512 4,199 3,422 6,289
R-squared 0.029 0.039 0.040 0.031 0.031 0.040 0.037 0.035
N Participants 666 323 241 748 562 427 348 641

Notes: Dependent in all regressions is weight of advice. Robust standard errors clustered by participant. *, **, and *** indicate
statistical significance at the 10%, 5%, and 1% level, respectively. All regressions control for apartment, order, and subject pool
fixed effects.
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TABLE A.7: OLS Regressions of time spent on task, with demographics

Time spent on
Dependent Both estimates Initial estimate Final estimate
Conditions All Advice All No Advice Advice

only advice only
Model (1) (2) (3) (4) (5) (6)

PerformancePay 5.224*** 7.274*** 5.036*** 3.551 6.400*** 0.874
(1.566) (2.792) (1.417) (2.454) (2.374) (0.672)

Tournament 4.861*** 6.040** 4.325*** 3.638 5.610*** 0.430
(1.538) (2.548) (1.376) (2.383) (2.134) (0.732)

HumanAIAdvice -0.361 0.361 -0.722
(2.170) (1.826) (0.543)

HumanAIAdvice -1.925 -1.906 -0.019
× PerfPay (3.880) (3.380) (0.837)
HumanAIAdvice -0.940 -1.881 0.941
× Tourn (3.959) (3.392) (0.923)
IsFemale 2.889** 2.332 2.637** 3.497* 2.181 0.151

(1.354) (1.723) (1.217) (2.111) (1.476) (0.403)
Age 0.265* 0.412** 0.203 -0.030 0.304* 0.108***

(0.149) (0.189) (0.129) (0.200) (0.166) (0.037)
HasUnivDegree -2.758* -3.652** -1.994 0.070 -3.188** -0.464

(1.452) (1.835) (1.304) (2.348) (1.592) (0.394)
IsAustrian -2.785** -2.897 -2.201* -2.766 -1.884 -1.013**

(1.394) (1.821) (1.227) (2.043) (1.538) (0.456)
Constant 85.420*** 84.626*** 69.623*** 87.228*** 60.900*** 23.726***

(4.121) (5.460) (3.637) (6.070) (4.675) (1.379)

Observations 14,890 9,890 14,890 5,000 9,890 9,890
R-squared 0.181 0.183 0.138 0.192 0.118 0.243
N Participants 1,489 989 1,489 500 989 989

Notes: Robust standard errors clustered by participant. *, **, and *** indicate statistical significance at the
10%, 5%, and 1% level, respectively. All regressions control for apartment, order, and subject pool fixed effects.
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TABLE A.8: OLS regressions of time spent on initial estimate

(1) (2) (3) (4)

Financial Incentives 3.437* 3.437*
(2.023) (2.023)

Algorithmic Advice -5.774*** -5.771***
(1.777) (1.777)

Financial Incentives × Algorithmic Advice 1.643
(2.433)

PerformancePay 3.229 3.229
(2.442) (2.442)

Tournament 3.665 3.665
(2.396) (2.396)

PerformancePay × Algorithmic Advice 2.366
(2.971)

Tournament × Algorithmic Advice 0.919
(2.922)

AIAdvice -6.026*** -6.023***
(1.951) (1.951)

HumanAIAdvice -5.547*** -5.544***
(2.030) (2.030)

Financial Incentives × AIAdvice 2.574
(2.716)

Financial Incentives × HumanAIAdvice 0.646
(2.850)

PerformancePay × AIAdvice 3.351
(3.401)

Tournament × AIAdvice 1.772
(3.208)

PerformancePay × HumanAIAdvice 1.263
(3.431)

Tournament × HumanAIAdvice 0.046
(3.522)

Constant 77.261*** 77.311*** 77.265*** 77.316***
(2.368) (2.366) (2.370) (2.366)

Observations 14,890 14,890 14,890 14,890
R-squared 0.139 0.139 0.139 0.139
N Participants 1,489 1,489 1,489 1,489

Post-hoc F tests p-values

FinInc + FinInc × Alg. Advice = 0 0.0002
PerfPay + PerfPay × Alg. Advice = 0 0.0010
Tourn + Tourn × Alg. Advice = 0 0.0061
FinInc + FinInc × AIAdvice = 0 0.0009
FinInc + FinInc × HumanAIAdvice = 0 0.0419
PerfPay + PerfPay × AIAdvice = 0 0.0057
PerfPay + PerfPay × HumanAIAdvice = 0 0.0627
Tourn + Tourn × AIAdvice = 0 0.0109
Tourn + Tourn × HumanAIAdvice = 0 0.1499

Notes: Robust standard errors clustered by participant. *, **, and *** indicate statistical significance at
the 10%, 5%, and 1% level, respectively. All regressions control for apartment, order, and subject pool
fixed effects.
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TABLE A.9: OLS regressions of estimation error in algorithmic advice
treatments, including weight of advice as an independent variable

(1) (2) (3) (4) (5)

PerformancePay -0.323 -0.344 -0.100 -0.047
(0.513) (0.510) (0.648) (0.648)

Tournament -0.781 -0.795 -0.291 -0.337
(0.509) (0.506) (0.683) (0.681)

HumanAIAdvice -0.250 -0.275 0.197 0.161
(0.413) (0.409) (0.748) (0.754)

HumanAIAdvice × PerfPay -0.458 -0.469
(1.008) (1.005)

HumanAIAdvice × Tourn -1.000 -0.892
(1.014) (1.018)

Weight of Advice -3.337*** -3.370*** -3.324*** -3.339*** -3.321***
(0.481) (0.486) (0.481) (0.486) (0.487)

IsFemale = 1 0.511
(0.443)

Age -0.008
(0.046)

HasUnivDegree = 1 0.261
(0.439)

IsAustrian = 1 -0.172
(0.484)

Constant 15.295*** 15.038*** 15.432*** 15.190*** 15.096***
(0.978) (0.953) (0.984) (1.018) (1.560)

Observations 9,711 9,711 9,711 9,711 9,711
R-squared 0.204 0.204 0.204 0.204 0.205
N Participants 989 989 989 989 989

Notes: Robust standard errors clustered by participant. *, **, and *** indicate statistical significance
at the 10%, 5%, and 1% level, respectively. All regressions control for apartment, order, and subject
pool fixed effects.
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TABLE A.10: OLS regressions of questionnaire answers (Table 6)
with treatment interaction terms

(1) (2) (3) (4)
Task Algorithm is Use of Use of

enjoyment credible algorithm context info

PerformancePay -0.579*** 0.201 7.754*** 0.528
(0.218) (0.209) (2.652) (1.576)

Tournament -0.881*** 0.400* 8.170*** -0.163
(0.234) (0.204) (2.450) (1.625)

AIAdvice 0.236
(0.205)

AIAdvice × PerfPay 0.252
(0.298)

AIAdvice × Tourn 1.044***
(0.300)

HumanAIAdvice 0.557*** 0.284 3.630 -0.066
(0.187) (0.202) (2.499) (1.611)

HumanAIAdvice × PerfPay 0.156 0.022 0.168 -2.402
(0.300) (0.279) (3.639) (2.435)

HumanAIAdvice × Tourn 0.457 -0.221 -2.384 1.289
(0.298) (0.274) (3.488) (2.357)

Constant 7.700*** 5.988*** 46.681*** 82.166***
(0.180) (0.217) (2.497) (1.541)

Observations 1,489 989 989 989
R-squared 0.059 0.010 0.030 0.003

Notes: Robust standard errors in parentheses. *, **, and *** indicate statistical significance at
the 10%, 5%, and 1% level, respectively. All regressions control for subject pool fixed effects.
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B Exploring the relationship between weight of advice and final estimate

error

In this appendix we aim to explore why a significant increase in weight of advice due to financial

incentives did not translate into a statistically significant reduction in the final estimation

error, despite higher advice utilization being beneficial to performance (see also the regressions

reported in Table A.9). Our suspicion is that since the final estimation error depends on several

factors such as initial estimates and weight of advice, heterogeneity in these may be responsible

for the (mostly) non-significance of our results on the effects of financial incentives on final

estimation errors.

Our regression model 1 below estimates treatment effects on initial estimates, to verify

whether incentives (and thus increased time spent on the task) have negative or positive effects

on the error of participants’ own initial estimate. As a second step, our approach is to separately

remove heterogeneity in either initial estimates or in weight of advice, and to explore how our

analysis results respond. Namely, in models 2 and 3 below we reduce heterogeneity in weight of

advice (by either assuming that all participants use the same average weight of advice in their

treatment, or that they employ the estimated weight of advice, respectively) while in model

4 we reduce the heterogeneity in initial estimates (by assuming all participants use the same

average initial estimate for that apartment).

In Table B.1 we report results from these four regressions using data from the advice con-

ditions. All models use treatment indicators and their interactions as independents. In or-

der to also single out the effect of performance pay and tournament incentives within the

Human AI advice conditions, we also report results from post-estimation f-tests on whether

the joint effects PerformancePay + HumanAIAdvice×PerformancePay and Tournament +

HumanAIAdvice×Tournament are estimated to be significantly different from zero.

Model 1 regresses the error in the initial estimate (before receiving advice) on treatment

indicators. The results show that there is no evidence that financial incentives would affect

the error in initial estimates. The effects for tournament incentives are always statistically

not significant, the effect of performance pay is not significant with regular AI advice and

even statistically significantly negative in the Human AI condition. This is inconsistent with

a potential mechanism whereby financial incentives at the same time increase error in initial

estimates (before advice) and weight of advice, such that both would cancel out each other.

The other three models use simulated final estimates as dependent variables. For the “Simu-

lated Final Estimate 1” (regressed in model 2), we take the individual estimates of participants,

but assume that all participants in a treatment condition use a weight of advice equal to the av-

erage weight of advice in their treatment condition. That is, we take out any within-treatment

heterogeneity in weight of advice. We find that under this simulation, performance pay re-
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duces error in both advice conditions while the effects for tournament pay are negative but not

significant.

The “Simulated Final Estimate 2” (regressed in model 3) reduces noise in weight of advice

in a different way. Instead of using the “raw” weight of advice calculated from comparing the

individual initial and final estimate, we use the estimated weight of advice for this observation

(based on model 4 presented in Table 2) in order to augment the initial estimate and arrive at

the final estimate. The results are almost the same as with the first simulation: performance

pay reduces participants’ estimate error but tournament pay does not.

Finally, the “Simulated Final Estimate 3” (regressed in model 4) removes a different kind

of heterogeneity: the one in initial estimates. When calculating the final estimate for each

participant and apartment, it uses the average initial estimate across all participants for this

treatment condition and apartment, and augments it with the given advice using the partic-

ipant’s individual weight of advice for this task. Under this simulation of the final estimate,

performance pay significantly reduces error in the AI advice condition but has no significant

effect in the human-AI condition, while it is the other way around for tournament pay : it

reduces error when the AI is human-augmented but not when it is not.

The three simulation models show that heterogeneity both in terms of weight of advice

and initial estimates may be responsible for the statistical null result of financial incentives on

estimation error, since removing these types of heterogeneity leads to significant effects (albeit

not consistently).
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TABLE B.1: OLS Regressions exploring effects of weight of advice on error in
final estimate error

Error Initial Error Simulated Error Simulated Error Simulated
Estimate Final Estimate 1 Final Estimate 2 Final Estimate 3

(1) (2) (3) (4)
PerformancePay -0.595 -1.459** -1.335** -0.335**

(1.119) (0.624) (0.585) (0.138)
Tournament 0.662 -0.546 -0.394 -0.056

(1.275) (0.728) (0.692) (0.142)
HumanAIAdvice 1.721 0.060 0.014 -0.274*

(1.345) (0.764) (0.705) (0.141)
HumanAIAdvice × PerfPay -2.163 -0.265 -0.241 0.536***

(1.714) (0.935) (0.872) (0.199)
HumanAIAdvice × Tourn -2.772 -0.767 -0.856 -0.631***

(2.003) (1.108) (1.032) (0.204)
Constant 33.634*** 19.714*** 17.600*** 3.457***

(2.555) (1.423) (1.268) (0.197)

Observations 9,890 9,890 9,890 9,711
R-squared 0.103 0.166 0.176 0.792
N Participants 989 989 989 989

Notes: Robust standard errors clustered by participant. *, **, and *** indicate statistical significance at the 10%, 5%,
and 1% level, respectively. All regressions control for apartment, order, and subject pool fixed effects.
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C Additional survey study on credibility perceptions of different forms of

human-AI collaborative advice

C.1 Study Design

To provide additional insights into how participants respond to the human-AI framing of the

algorithmic advice, we conducted a follow-up study. Specifically, in an experimental vignette

study we examine whether participants’ perceived credibility of the algorithmic advice is in-

fluenced by how the human-centered AI advice is generated. We contrast the description of

the human-centered AI algorithm from our main experiment (our baseline) with five addi-

tional treatments. Each treatment describes a different mechanism of how the human experts

interacted with the AI algorithm to generate the eventual human-centered AI advice.

In order to be able to freely confront participants with different mechanisms of how the

human experts interacted with the AI algorithm to generate the eventual human-centered

AI advice, while at the same time avoiding any deception, we employ a vignette scenario

study. We first familiarized our survey participants with the Airbnb price estimation task by

presenting them with an apartment listing (which as in the main experiment includes a photo,

a description, the average review scores, and a map with the location) and asking them to

estimate the price per night of this apartment. Every participant saw the same apartment, and

the estimate was not incentivized. The main purpose of this exercise was to have participants

immerse themselves into the task in order to get a feeling for the challenges encountered.

Then, we presented participants with a vignette scenario. They were asked to imagine

that they no longer have to do the task on their own, but that they receive advice from a

human-centered AI algorithm. We provide participants with the following description of the

human-centered AI advice, which is identical to our main experiment:

Human-centered AI considers not just numbers but also human experience and advice. In

fact, the human-centered AI advice in our study consists of two elements: (1) a random forest

model trained on a large data set and (2) the expertise of 5 individuals who are familiar with

the real-estate sector in Vienna.

(1) The random forest model is trained on a real dataset of approximately 12,000 Airbnbs in

Vienna. In particular, the random forest model generates estimates of Airbnb listing prices

based on an ensemble learning method for regression that operates by constructing a multitude

of decision trees and returns the average estimate of the individual trees. The model takes

into account the following input variables: room type (apartment, private room), number of

bedrooms, number of beds, number of accommodated guests, district of Vienna, number of

reviews, average review rating, and whether host is a superhost or not.
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(2) In addition to this, the price estimate of the human-centered AI incorporates advice from 5

experts. The 5 experts have substantial experience in the pricing of Airbnb apartments and are

familiar with the housing and accommodation sector in Vienna.

Our baseline scenario uses the same human-centered advice description as in our main

experiment, such we do not provide any other information to participants. In five additional

treatments we add another sentence to detail how the price prediction by the human experts

is combined with the price prediction by the AI algorithm. The design of our new treatments

is based on the hybrid intelligence concepts developed by Dellermann et al. (2019). Between-

participants, we randomly assign the following additional explanations as treatment conditions:

• Treatment 0 (baseline): No additional text.

• Treatment 1 (50/50 weighting): The eventual advice of the human-centered AI algo-

rithm is the weighted average of the prediction of the random forest model (50% weight)

and the average prediction of the 5 human experts (50% weight).

• Treatment 2 (80/20 weighting): The eventual advice of the human-centered AI algo-

rithm is the weighted average of the prediction of the random forest model (80% weight)

and the average prediction of the 5 human experts (20% weight).

• Treatment 3 (Human adjusts AI): The eventual advice of the human-centered AI

algorithm is the result of a process where the random forest model first made an initial

prediction which was provided to the 5 human experts, who then made the final prediction.

• Treatment 4 (AI adjusts human): The eventual advice of the human-centered AI

algorithm is the result of a process where the 5 human experts first made their predictions

which were then provided to the algorithm, which made the final prediction.

• Treatment 5 (Human-AI collaboration): The eventual advice of the human-centered

AI algorithm is the result of a process where the 5 human experts and the algorithm

interacted with each other to make the final prediction.

As our main dependent variable, we ask participants to what extent they would find the

advice of such a human-centered AI algorithm to be a credible source for estimating the price

of an Airbnb apartment. This question on source credibility, which is based on Chen et al.

(2022), is identical to an item in our post-experiment questionnaire of the main experiment.

Participants respond on a scale from 0 (to no extent) to 10 (to a very large extent). After the
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measurement of our dependent variable, on the next survey page we employed an ex-post recall

check by asking participants to remember the exact description of the humanAI algorithm. The

survey ended with a few brief questions on demographics.

We randomized the presentation format since it may affect how rather complex informa-

tion is processed by participants. Half of the participants received all the information on the

human-centered AI algorithm on one single page, while the remaining half received the infor-

mation sequentially on multiple screens. We control for this information provision format in

our subsequent analyses.

We recruited participants from a large public university in Austria via a university-wide

survey mailing list. In total, we received 1601 responses, from which we excluded 72 participants

for suspected double participation from the same IP address, and 13 participants who did not

provide their contact details upon the study’s completion. Thus, our final dataset includes

observations from 1,516 participants. In terms of demographics, the average participant age

is 22.3 years and 52% identify as female. About one third are masters degree students, and

the remaining two thirds are undergraduate students in business, economics, or law. 54% are

Austrian nationals, while more than 70 different nationalities are present in the remaining half.

As a “thank you” for participating in our survey study, participants could enter a lottery, with

five winners each receiving EUR 100.

C.2 Results

In Table C.1, we present descriptive statistics on participants’ perceived credibility in the

human-centered AI advice. Columns 1-3 present descriptives for the full sample, while columns

4-6 report aggregates only for those participants who passed the ex-post recall check. Due

to the complex nature and lengthy description of the human-centered AI algorithms, a rather

large fraction of participants failed the ex-post recall check in our study. However, we do not

observe any significant differences in our study results between the two sample groups.

Table C.2 reports results from OLS regressions of the perceived credibility of the human-

centered AI advice on our five treatments conditions. Columns 1-3 refer to the whole sample,

columns 4-6 only consider participants who passed the ex-post recall check. Columns 1 and

4 are simple OLS models, columns 2 and 5 control for the presentation format (sequential

vs. simultaneous), and columns 3 and 6 controls for participant demographics. Across all

specifications, we do not observe any statistically significant differences between our baseline

treatment and the five additional treatments. Also across the five treatments, we do not observe

a clear pattern that some human-AI collaborations would be rated higher or lower on credibility

than others. In fact, across all treatments, participants rate the advice credibility with the same

value of around 6 out of 10.
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TABLE C.1: Average credibility across treatments

Passed
Full sample recall check

N Avg. (StdDev) N Avg. (StdDev)

Treatment 0: Baseline 259 6.205 (1.765) 259 6.205 (1.765)
Treatment 1: 50/50 weighting 247 6.170 (1.690) 185 6.249 (1.682)
Treatment 2: 80/20 weighting 255 6.157 (1.716) 210 6.181 (1.738)
Treatment 3: Human adjusts AI 262 6.137 (1.750) 132 6.136 (1.716)
Treatment 4: AI adjusts human 261 6.061 (1.729) 94 5.989 (1.569)
Treatment 5: Human-AI coll. 232 6.091 (1.806) 87 6.023 (1.874)
All 1,516 6.137 (1.740) 967 6.161 (1.726)

This suggests that the way in which the human expert predictions and the AI predictions

are combined does not meaningfully affect the perceived credibility of the human-centered AI

advice. Thus, we conclude that our inferences from the main experiment are likely generaliz-

able to many different settings in practice, regardless of how specifically human and machine

expertise is combined to generate a human-centered AI advice.
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TABLE C.2: Average credibility across treatments

Full sample Passed recall check
(1) (2) (3) (4) (5) (6)

Treatment = 1 -0.035 -0.034 -0.030 0.044 0.039 0.045
(0.155) (0.155) (0.154) (0.166) (0.167) (0.166)

Treatment = 2 -0.048 -0.054 -0.048 -0.024 -0.031 -0.033
(0.154) (0.154) (0.153) (0.161) (0.161) (0.160)

Treatment = 3 -0.067 -0.066 -0.068 -0.068 -0.075 -0.087
(0.153) (0.153) (0.152) (0.185) (0.185) (0.185)

Treatment = 4 -0.143 -0.140 -0.158 -0.215 -0.213 -0.232
(0.153) (0.153) (0.152) (0.208) (0.208) (0.208)

Treatment = 5 -0.114 -0.114 -0.115 -0.182 -0.177 -0.184
(0.157) (0.157) (0.157) (0.214) (0.214) (0.214)

Sequential 0.098 0.089 0.089 0.072
(0.090) (0.089) (0.112) (0.112)

Age -0.017 -0.006
(0.014) (0.018)

Austrian -0.058 -0.032
(0.091) (0.113)

Female -0.274*** -0.254**
(0.090) (0.111)

MA degree 0.257*** 0.251**
(0.099) (0.126)

Constant 6.205*** 6.155*** 6.364*** 6.205*** 6.160*** 6.104***
(0.108) (0.117) (0.276) (0.107) (0.121) (0.342)

Observations 1,516 1,516 1,516 967 967 967
R-squared 0.001 0.002 0.013 0.002 0.003 0.015

Notes: The dependent is the credibility rating [1-10] of the humanAI algorithm. Columns 1-3 report
results from the full sample, columns 4-6 only include participants who passed the recall check. *, **,
and *** indicate statistical significance at the 10%, 5%, and 1% level, respectively.
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D The algorithm underlying the algorithmic advice in the experiment

The algorithm used for the experimental stimuli (the algorithmic advice) is based on a random

forest model which is trained on a real dataset obtained from www.insideairbnb.com. The

raw data set of Vienna listings was originally scraped on 09.06.2021 and contained 11,567

observations. The model generates estimates of Airbnb listing prices based on a random forest

model – an ensemble learning method for regression that operates by constructing a multitude

of decision trees and returns the average estimate of the individual trees. We include the full

code of the model in the replication package.

D.1 Data cleaning and variables

The dataset contains the following information: numerical ID (id), weblink to actual Airbnb list-

ing (listing url), listing title (name), description of Apartment (description), title picture of the

apartment (picture url), yes/no indication if host is an “Airbnb Superhost” (host is superhost),

yes/no indication if host’s identity was verified (host identity verified), the district in Vienna

where the apartment is located (neighbourhood cleansed), an indicator whether an entire

home/apartment or just a room was offered (room type), the number of guests than can be

accommodated (accommodates), the number of bathrooms (bathrooms text), the number of

bedrooms (bedrooms), the number of beds (beds), the apartment base price per night (price),

the total number of reviews (number of reviews), the number of reviews last three months (num-

ber of reviews ltm), the number of reviews last 30 days (number of reviews l30d), the date of

the first review (first review), the date of the last review (last review), the overall review score

(review scores rating), and the review scores on sub-categories accuracy, cleanliness, check-in,

communication, location, and value (review scores XX).

Before the dataset is used in the model, it is cleaned and reduced. In particular, observa-

tions of hotel rooms or shared rooms, where superhost status was not known, where prices were

outliers (prices smaller than 30 USD and above 300 USD), or where hosts were very inexperi-

enced (less than 5 reviews) were dropped. The final dataset for training the algorithm consists

of 5,426 observations.

The algorithm takes into account the following input variables: room type (apartment,

private room), number of bedrooms, number of beds, number of accommodated guests, district

of Vienna, number of reviews, average review rating, and whether host is a superhost or not.

The algorithm deploys an 80/20 stratified sampling split, so 80% of the data was used as a

training set and 20% as a test set.
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D.2 Model specifications and selection

Our algorithm compares decision-tree models and random forest models. It is implemented in

R. First, we perform grid-based hyperparameter search for a decision tree model. We use a

grid of potential values for the hyperparameter(s) that we want to try – we specify potential

values for the hyperparameters, and the tune grid() function builds separate models using these

values. We compare how well the individual values work on the cross-validated data set and

select the ”best” set of hyperparameters to predict the separate test data set. To include grid

search in our pipeline, we specify three things: a) in the decision tree() function we specify

which hyperparameters we want to tune, b) we define a grid of hyperparameter values and

provide it to the fit function, c) we use the function tune grid() to tell tidymodels that we want

to tune the previously defined hyperparameters. We then select the hyperparameters based on

the best Root Mean Squared Errors, and predict the test set.

Second, we use random search as an efficient alternative to grid search in decision tree

modeling. In random search, we switch our grid of hyperparameter values to grid random, and

R creates random values for the hyperparameters to try. We specify a random grid using 10

different combinations of values. We then compare the results of the random search with the

results of the grid search. We select the best hyperparameters according to the metric Root

Mean Squared Error and predict the test set. Then we compare our decision-tree models based

on grid and random search.

Third, we specify a random forest model. Random Forests are a type of bagging approach

where multiple, independent decision trees are built on separate, independent, bootstrapped

data sets. Random forests improve upon standard bagging approaches by de-correlating the

individual trees. If we have a set of very strong predictors in the data set, these predictors

will be used over and over by the separate trees. To prevent this, random Forests randomly

select a subset of predictors at each step that are considered for determining the next split in

the tree. This guarantees that ”less important” predictors are chosen sometimes. In R, this

hyperparameter is called mtry. We try different values for this parameter and select the one

that works best for our dataset. Additional parameters that we tune are trees (the number of

trees) and min n (minimum number of data points). To specify cross-validation, we use the

vfold cv function. We predict the test set.

Finally, we can compare the predictions of decision tree and random forest models on the

test set. We a) sort the results according to a specific metric Root Mean Squared Error, b)

extract the best model type, c) extract the best hyperparameters for this model type, d) re-

train the final model using the best hyperparameters, and e) predict the test data. Ultimately

the random forest model is chosen based on this metric.
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E Screenshots of experimental instructions and decision screens

Screenshot 1: Welcome screen, payment information, and consent form

Screenshot 2: Filtering question

Screenshot 3: Ground rules of the study
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Screenshot 4: Basic task description

Screenshot 5: Detailed task description and comprehension questions
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Screenshot 6: Example visualization of an Airbnb listing

57



Screenshot 7: Detailed instructions on the AI Algorithm (only AI treatments)
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Screenshot 8: Detailed instructions on the Human-framed AI Algorithm

59



Screenshot 9: Example of Airbnb listing with algorithmic advice

Screenshot 10: Compensation contract details – fixed payment
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Screenshot 11: Compensation contract details – tournament incentives (as shown to

treatment groups without algorithmic advice)
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Screenshot 12: Compensation contract details – performance-based incentives (as shown to

treatment groups with algorithmic advice)
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Screenshot 13: Attention check (same for all treatment groups)

Screenshot 14: Example Airbnb listing – without algorithmic advice (treatment groups)
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Screenshot 15: Example Airbnb listing – with AI advice
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Screenshot 16: Example Airbnb listing – with human-framed AI advice
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Screenshot 17: Post experiment questionnaire – demographics
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Screenshot 18: Post experiment questionnaire – Risk taking measure

Screenshot 19: Post experiment questionnaire – Task enjoyment measure

Screenshot 20: Post experiment questionnaire – Overconfidence measure
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Screenshot 21: Post experiment questionnaire – Information reliance measures (bottom

question only shown in algorithmic advice treatments)

Screenshot 22: Post experiment questionnaire – Unfamiliarity questions
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Screenshot 23: Post experiment questionnaire – Source credibility measure and free text (only

shown in algorithmic advice treatments)

Screenshot 24: Final screen and contact details form
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